

RUHR-UNIVERSITÄT BOCHUM

Constraining cosmic-ray propagation with gamma rays

Julia Tjus

Origin of cosmic rays unknown:

Example ultra high energy cosmicray transport in Galactic B-field

Center

Magnetic fields \rightarrow cosmic rays \rightarrow gamma-rays

- 1. Magnetic fields \rightarrow accelerate (= create) cosmic rays
- 2. Cosmic rays \rightarrow transport in B-fields (diffusive/advective/...)
- 3. Cosmic rays \rightarrow interaction with ambient medium (gas/B-fields/photons) $\rightarrow \gamma$ production

Spectral Energy Distribution: Imprinted environment & transport properties

Synchrotron radiation \rightarrow n_e*B^2

- Simplified view:
- normalization governed by environmental properties
- Spectral properties can reveal transport properties
- But: both is coupled, need multimessenger modeling to understand things
- (radio-gamma-rays, neutrinos, cosmic rays)

Contents

- 1. Cosmic-ray propagation at high energies
- 2. Gamma-ray observations and cosmic-ray propagation
 - 1. The Milky Way
 - 2. Active Galaxies
- 3. Summary & Conclusion

Contents

1. Cosmic-ray propagation at high energies

Cosmic-ray propagation regimes

Cosmic-ray propagation regimes

 $(B = 3 \mu G)$

Cosmic-ray propagation regimes: methods

CRPropa 3.2 Open Source Propagation Tool

CRPropa 3.2 — an advanced framework for high-energy particle propagation in extragalactic and galactic spaces

Rafael Alves Batista,^{*a,b*} Julia Becker Tjus,^{*c,d*} Julien Dörner,^{*c,d*} Andrej Dundovic,^{*e,f*} Björn Eichmann,^{*c,d*} Antonius Frie,^{*c,d*} Christopher Heiter,^{*g,h*} Mario R. Hoerbe,^{*c,i,d*} Karl-Heinz Kampert,^{*j,d*} Lukas Merten,^{*k,c,d*} Gero Müller,^{*g*} Patrick Reichherzer,^{*c,d,l*} Andrey Saveliev,^{*m,n*} Leander Schlegel,^{*c,d*} Günter Sigl,^{*o*} Arjen van Vliet^{*p*} and Tobias Winchen^{*g,h*}

Ruhr University Bochum

CRPropa 3.2: bridging diffusive and ballistic propagation

$$\frac{\delta n}{\delta t} = \nabla \cdot \left(\widehat{D} \cdot \nabla n\right) - \vec{u} \cdot \nabla n + Q$$

conversion into Stochastic Differential Equation (SDE):

$$\frac{d\boldsymbol{p}}{dt} = q(\boldsymbol{\nu} \times \boldsymbol{B})$$

Center

Simulations of the steady-state diffusion coefficient

Diffusion equation:

$$D(t)\Delta f(x,t) = \frac{\delta f(x,t)}{\delta t}$$

Solution is known:

$$f(x,t) = \frac{1}{2\sqrt{\pi D_{xx}t}} \exp(-\frac{x^2}{4D_{xx}t})$$

Simulations of the steady-state diffusion coefficient

Taylor Green Kubo ansatz: Calculate diffusion coefficient from numerical results:

$$\langle (\Delta x)^2 \rangle = \int_{-\infty}^{+\infty} dx \ x^2 f(x,t) = 2t D_{xx}(t)$$
$$D_{xx} = \lim_{t \to \infty} \frac{\langle (\Delta x)^2 \rangle}{2t} = \text{const in diffusion limit}$$

Expectation: energy dependence of $D_{\parallel} \sim E^{\alpha}$ (power law) $\alpha = \frac{1}{3}$ (Kolmogorov & $\frac{\delta B}{B} \ll 1$) $\alpha = 1$ (Bohm limit $\frac{\delta B}{B} \gg 1$)

Contents

- 1. Cosmic-ray propagation at high energies
- 2. Gamma-ray observations and cosmic-ray propagation
 - 1. The Milky Way
 - 2. Active Galaxies

Astrophysical application: Gamma-ray measurements of the Galactic plane

- Signatures dominated by hadronic interactions
- → proton spectrum can be deduced

Fermi: proton gradient along galactocentric radius

Julia Tjus (RUB @ Gamma2024)

Energy spectra after transport in Leaky Box

Support of this argument from plasma physics

Reicherzer, Merten, Dörner, JBT, Zweibel, Püschel, SNAS (2022)

Turbulence level from modified JF12 GF model (Janson & Farrar 2012, Kleimann, JBT et al 2019)

September 05, 2024

Julia Tjus (RUB @ Gamma2024)

Energy spectra after transport in Leaky Box

- D(E,b/B) ~ Ε^{γ(b/B)}
- $\gamma(b) = A + C^*(b/B)^{\beta}$
- δ B/B increases with r
- > phenomenological model receives fundamental explanation!
- Details even depend on escape-direction of cosmic rays

$${}_{\rm ff}(r_{\rm gc}) \approx \begin{cases} \tau_{\parallel} \propto \left(\frac{b}{B}\right)^2 \left(\frac{E}{B_{\rm tot}}\right)^{-\gamma_{\parallel}} \left\langle\frac{d_{\parallel}^2}{H^2}\right\rangle & \text{for } r_{\rm gc} \lesssim 5 \, \rm kpc \\ \tau_{\perp} \propto \left(\frac{b}{B}\right)^{-2} \left(\frac{E}{B_{\rm tot}}\right)^{-\gamma_{\perp}} \left\langle\frac{d_{\perp}^2}{H^2}\right\rangle & \text{elsewhere} \\ \tau_{\parallel} \propto \left(\frac{b}{B}\right)^2 \left(\frac{E}{B_{\rm tot}}\right)^{-\gamma_{\parallel}} \left\langle\frac{d_{\parallel}^2}{H^2}\right\rangle & \text{for } r_{\rm gc} \gtrsim 19 \, \rm kpc \end{cases}$$

Reichherzer, Merten, Dörner, JBT, Püschel, Zweibel, SNAS (2022)

 $au_{
m di}$

3D Transport modeling of the PeVatron in the Galactic Center

3D B-field representation (Gündüz, JBT, et al (2022)); 3 source model; Anisotropic transport $(D_{\parallel}/D_{\perp} = \epsilon)$

20

Best fit for isotropic diffusion ($\epsilon = 1$)

• 2D distribution can be fit reasonably well using isotropic diffusion

September 05, 2024

Julia Tjus (RUB @ Gamma2024)

Application to plasmoids of AGN

Fig: Becker Tjus et al, MPDI Physics (2022)

Application to plasmoids of AGN

- Calculation of diffusion coefficient in equation of motion picture
- As a function of reduced rigidity (~energy)
- Purely turbulent field → assumption of Bohm diffusion

Becker Tjus et al, MPDI Physics (2022)

Vladimir Kiselev, Bachelor thesis (2022), Masterthesis (ongoing)

Comparison of results

Diffusive Regime (1e5 GeV)

Ballistic Regime (1e8 GeV)

Vladimir Kiselev, Bachelor thesis (2022)

Transition of diffusive to ballistic propagation: predicted break in gamma-ray spectrum

- Example R = 1e13m
- B = 0.03G
- → change from diffusive to ballistic at around 1e13eV-1e15eV CR energy → TeV-100TeV gamma-ray energy
- > expected break in the spectrum

3. Summary & Conclusions

- CRPropa 3.2 first tool to handle transport equation and equation of motion at the same time
- Now able to quantiatively bridge diffusive and ballistic regimes
- Galactic cosmic-ray gradient can be explained with a varying spatial diffusion coefficient
- Diffuse Galactic Center PeVatron can be explained with isotropic diffusion and the three most prominent sources
- Depending on source parameters, break between diffusive and ballistic propagation to be expected in future CTA data. Important to include in modeling, and search for with IACTs
- Gamma rays are great, but even better in the Multimessenger Picture ③

