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Origin of cosmic rays unknown:

Example ultra high energy cosmic-
ray transport in Galactic B-field

CenA(4 – 8 EeV): @ Earth

only extragalactic

+ Galactic: regular component

+ Galactic:
regular + turbulent

Gamma-rays to the rescue!



Magnetic fields  cosmic rays  gamma-rays

1. Magnetic fields  accelerate (= create) cosmic rays
2. Cosmic rays  transport in B-fields (diffusive/advective/…)
3. Cosmic rays  interaction with ambient medium (gas/B-fields/photons)  γ 

production
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Spectral Energy Distribution:
Imprinted environment & transport properties

 Simplified view:

 normalization governed by 
environmental properties

 Spectral properties can 
reveal transport properties

 But: both is coupled, need 
multimessenger modeling 
to understand things 
 (radio-gamma-rays, 

neutrinos, cosmic rays)

Synchrotron radiation  n_e*B^2

IC/brems/π0
 B, n_e, n_p, n_H
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Cosmic-ray propagation regimes

(B = 3 µG) Fig: IceCub-Gen2 Whitepaper



diffusion-advection ballistic propagation

Cosmic-ray propagation regimes

(B = 3 µG) Fig: IceCub-Gen2 Whitepaper



diffusion-advection ballistic propagation

Cosmic-ray propagation regimes: methods

(Protons, B = 3 µG)

test particle approach

transport equation equation of motion

MHD/Fluid 
description+ 

Kinetic Theory

This talk



CRPropa 3.2 Open Source Propagation Tool

Ruhr University Bochum

Chair for theoretical physics IV



CRPropa 3.2: bridging diffusive and ballistic propagation

Merten, JBT, Fichtner, Sigl, JCAP (2017)

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

= 𝛻𝛻 ⋅ �𝐷𝐷 ⋅ 𝛻𝛻𝑛𝑛 − 𝑢𝑢 ⋅ 𝛻𝛻𝑛𝑛 + 𝑄𝑄
𝑑𝑑𝒑𝒑
𝑑𝑑𝑑𝑑

= 𝑞𝑞(𝒗𝒗 × 𝑩𝑩)

Numerical solution via Cash-Karb or Boris-Pushconversion into Stochastic Differential Equation (SDE):
𝑑𝑑𝑟𝑟𝜈𝜈 = 𝐴𝐴𝜈𝜈𝑑𝑑𝑑𝑑 + 𝐷𝐷𝜈𝜈𝜈𝜈𝑑𝑑𝜔𝜔𝜇𝜇

 treatment as quasi-particles

Treatment in one framework 
(CRPropa 3.1 - Merten, JBT, Fichtner, Sigl, JCAP 2017)
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Simulations of the steady-state diffusion coefficient

𝑓𝑓 𝑥𝑥, 𝑡𝑡 =
1

2 𝜋𝜋𝐷𝐷𝑥𝑥𝑥𝑥𝑡𝑡
exp(−

𝑥𝑥2

4𝐷𝐷𝑥𝑥𝑥𝑥𝑡𝑡
)

𝐷𝐷(𝑡𝑡)∆𝑓𝑓 𝑥𝑥, 𝑡𝑡 =
𝛿𝛿𝛿𝛿(𝑥𝑥, 𝑡𝑡)
𝛿𝛿𝛿𝛿

Diffusion equation:

Solution is known:
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Simulations of the steady-state diffusion coefficient

∆𝑥𝑥 2 = �
−∞

+∞
𝑑𝑑𝑑𝑑 𝑥𝑥2𝑓𝑓 𝑥𝑥, 𝑡𝑡 = 2𝑡𝑡𝐷𝐷𝑥𝑥𝑥𝑥(𝑡𝑡)

Taylor Green Kubo ansatz: 
Calculate diffusion coefficient
from numerical results:

𝐷𝐷𝑥𝑥𝑥𝑥 = lim
𝑡𝑡→∞

∆𝑥𝑥 2

2𝑡𝑡
=const in diffusion limit

diffusive
ballisitic

Expectation: energy dependence of 𝐷𝐷∥~𝐸𝐸𝛼𝛼(power law)
𝛼𝛼 = 1

3
 (Kolmogorov & 𝛿𝛿𝛿𝛿

𝐵𝐵
≪ 1)

𝛼𝛼 = 1 (Bohm limit 𝛿𝛿𝛿𝛿
𝐵𝐵
≫ 1)
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Astrophysical application:
Gamma-ray measurements of the Galactic plane

Signatures dominated by hadronic 
interactions
 proton spectrum can be deduced

Figs: Isabelle Grenier, talk @ Bad Honnef (2018)
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Fermi: proton gradient along galactocentric radius
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Acero et al (Fermi), ApJ 2016

Hardening of the local CR spectrum toward the inner Galaxy
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Energy spectra after transport in Leaky Box

Phenomenological ansatz

(Evoli 2012, Gaggero et al, 2015): 

D(E,r) ~ Eγ(r)

γ(r) = A + C*r
Fig: JBT & Merten
Phys.Rep., in prep
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Support of this argument from plasma physics
b/

B

r/kpc

Turbulence level from modified JF12 GF model 
(Janson & Farrar 2012, Kleimann, JBT et al 2019)

Reicherzer, Merten, Dörner, JBT, Zweibel, Püschel, SNAS (2022)

γ(b) = A + C*(b/B)β
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Energy spectra after transport in Leaky Box

D(E,b/B) ~ Eγ(b/B)

 γ(b) = A + C*(b/B)β

 δB/B increases with r
 phenomenological model 

receives fundamental 
explanation!
Details even depend on 

escape-direction of cosmic rays

Reichherzer, Merten, Dörner, JBT, Püschel, Zweibel, SNAS (2022)
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3D Transport modeling of the PeVatron in the Galactic Center

3D B-field representation (Gündüz, JBT, et al (2022)); 3 source model;
Anisotropic transport (𝐷𝐷∥/𝐷𝐷⊥ = 𝜖𝜖)
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Best fit for isotropic diffusion (𝜖𝜖 = 1)

 2D distribution can be fit reasonably well using isotropic diffusion

September 05, 2024 Julia Tjus (RUB @ Gamma2024)

Dörner et al, A&A (2024)



Application to plasmoids of AGN

Fig: Becker Tjus et al, MPDI Physics (2022)
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Application to plasmoids of AGN

Calculation of diffusion 
coefficient in equation of 
motion picture
As a function of reduced 

rigidity (~energy)
Purely turbulent field  

assumption of Bohm diffusion

Vladimir Kiselev, Bachelor thesis (2022), Masterthesis (ongoing) Marcel Schroller, PhD thesis (ongoing)

Becker Tjus et al, MPDI Physics (2022)



Comparison of results
Diffusive Regime (1e5 GeV)

Vladimir Kiselev, Bachelor thesis (2022) Marcel Schroller, PhD thesis (ongoing)

Becker Tjus et al, MPDI Physics (2022)

Ballistic Regime (1e8 GeV)



Transition of diffusive to ballistic propagation: 
predicted break in gamma-ray spectrum

Example R = 1e13m
B = 0.03G
 change from diffusive to 

ballistic at around 1e13eV-
1e15eV CR energy  TeV-
100TeV gamma-ray energy
 expected break in the 

spectrum
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3. Summary & Conclusions
 CRPropa 3.2 first tool to handle transport equation and equation of 

motion at the same time
 Now able to quantiatively bridge diffusive and ballistic regimes
Galactic cosmic-ray gradient can be explained with a varying spatial 

diffusion coefficient
 Diffuse Galactic Center PeVatron can be explained with isotropic 

diffusion and the three most prominent sources
 Depending on source parameters, break between diffusive and ballistic 

propagation to be expected in future CTA data. Important to include in 
modeling, and search for with IACTs 
Gamma rays are great, but even better in the Multimessenger Picture 
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Map of Fermi gamma-rays & high-energy neutrinos from the Milky Way
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