

RUHR-UNIVERSITÄT BOCHUM

Constraining cosmic-ray propagation with gamma rays

Julia Tjus

Origin of cosmic rays unknown:

Example ultra high energy cosmicray transport in Galactic B-field

Center

Magnetic fields \rightarrow cosmic rays \rightarrow gamma-rays

- 1. Magnetic fields \rightarrow accelerate (= create) cosmic rays
- 2. Cosmic rays \rightarrow transport in B-fields (diffusive/advective/...)
- 3. Cosmic rays \rightarrow interaction with ambient medium (gas/B-fields/photons) $\rightarrow \gamma$ production

Spectral Energy Distribution: Imprinted environment & transport properties

Synchrotron radiation \rightarrow n e*B^2

- **Simplified view:**
- normalization governed by environmental properties
- **Spectral properties cand** reveal transport properties
- **But: both is coupled, need** multimessenger modeling
to understand things
- (radio-gamma-rays, neutrinos, cosmic rays)

September 05, 2024 Julia Tjus (RUB @ Gamma2024)

Contents

- 1. Cosmic-ray propagation at high energies
- 2. Gamma-ray observations and cosmic-ray propagation
	- 1. The Milky Way
	- 2. Active Galaxies
- 3. Summary & Conclusion

Contents

1. Cosmic-ray propagation at high energies

Cosmic-ray propagation regimes

Cosmic-ray propagation regimes

 $(B = 3 \mu G)$ **Fig:** IceCub-Gen2 Whitepaper

Cosmic-ray propagation regimes: methods

CRPropa 3.2 Open Source Propagation Tool

 $CRPropa$ 3.2 — an advanced framework for high-energy particle propagation in extragalactic and galactic spaces

Rafael Alves Batista.^{a, b} Julia Becker Tius, ^{c, d} Julien Dörner, ^{p, d} Andrej Dundovic, ^{e, f} Björn Eichmann, ^{c, d} Antonius Frie, ^{c, d} Christopher Heiter, ^{g, h} Mario R. Hoerbe, ^{c, i, d} Karl-Heinz Kampert, ^{j, d} Lukas Merten, k,c,d Gero Müller, ^g Patrick Reichherzer, c,d,l Andrey Saveliev, m,n Leander Schlegel _{c,d} Günter Sigl,^o Arien van Vliet^{p} and Tobias Winchen^{q,h}

Ruhr University Bochum

CRPropa 3.2: bridging diffusive and ballistic propagation

$$
\frac{\delta n}{\delta t} = \nabla \cdot (\widehat{D} \cdot \nabla n) - \vec{u} \cdot \nabla n + Q
$$

conversion into Stochastic Differential Equation (SDE): Numerical solution via Cash-Karb or Boris-Push

 $dr_{v} = A_{v}dt + D_{v\mu}d\omega^{\mu}$

 \rightarrow treatment as quasi-particles

Merten, JBT, Fichtner, Sigl, JCAP (2017)

$$
\frac{d\boldsymbol{p}}{dt} = q(\boldsymbol{v} \times \boldsymbol{B})
$$

Treatment in one framework (CRPropa 3.1 - Merten, JBT, Fichtner, Sigl, JCAP 2017)

:enter

Simulations of the steady-state diffusion coefficient

Diffusion equation:

$$
D(t)\Delta f(x,t) = \frac{\delta f(x,t)}{\delta t}
$$

Solution is known:

$$
f(x,t) = \frac{1}{2\sqrt{\pi D_{xx}t}} \exp(-\frac{x^2}{4D_{xx}t})
$$

Simulations of the steady-state diffusion coefficient

Taylor Green Kubo ansatz: Calculate diffusion coefficient from numerical results:

$$
\langle (\Delta x)^2 \rangle = \int_{-\infty}^{+\infty} dx \, x^2 f(x, t) = 2t D_{xx}(t)
$$

$$
D_{xx} = \lim_{t \to \infty} \frac{\langle (\Delta x)^2 \rangle}{2t} = \text{const in diffusion limit}
$$

Expectation: energy dependence of $D_{\parallel} \sim E^{\alpha}$ (power law) $\alpha = \frac{1}{3}$ (Kolmogorov & $\frac{\delta B}{B} \ll 1$) $\alpha = 1$ (Bohm limit $\frac{\delta B}{R} \gg 1$)

Contents

- 1. Cosmic-ray propagation at high energies
- 2. Gamma-ray observations and cosmic-ray propagation
	- 1. The Milky Way
	- 2. Active Galaxies

Astrophysical application: Gamma-ray measurements of the Galactic plane

- **Signatures dominated by hadronic** interactions
- **P** proton spectrum can be deduced

Fermi: proton gradient along galactocentric radius

September 05, 2024 Julia Tjus (RUB @ Gamma2024)

Energy spectra after transport in Leaky Box

Support of this argument from plasma physics

Reicherzer, Merten, Dörner, JBT, Zweibel, Püschel, SNAS (2022)

Turbulence level from modified JF12 GF model (Janson & Farrar 2012, Kleimann, JBT et al 2019)

Energy spectra after transport in Leaky Box

- \blacksquare D(E,b/B) ~ E^{γ(b/B)}
- $\gamma(b) = A + C^{*}(b/B)^{\beta}$
- $\overline{}$ δB/B increases with r
- \rightarrow phenomenological model receives fundamental explanation!
- Details even depend on escape-direction of cosmic rays

$$
\tau_{\parallel} \propto \left(\frac{b}{B}\right)^2 \left(\frac{E}{B_{\text{tot}}}\right)^{-\gamma_{\parallel}} \left\langle \frac{d_{\parallel}^2}{H^2} \right\rangle \text{ for } r_{\text{gc}} \lesssim 5 \text{ kpc}
$$
\n
$$
\tau_{\perp} \propto \left(\frac{b}{B}\right)^{-2} \left(\frac{E}{B_{\text{tot}}}\right)^{-\gamma_{\perp}} \left\langle \frac{d_{\perp}^2}{H^2} \right\rangle \text{ elsewhere}
$$
\n
$$
\tau_{\parallel} \propto \left(\frac{b}{B}\right)^2 \left(\frac{E}{B_{\text{tot}}}\right)^{-\gamma_{\parallel}} \left\langle \frac{d_{\perp}^2}{H^2} \right\rangle \text{ for } r_{\text{gc}} \gtrsim 19 \text{ kpc}
$$

Reichherzer, Merten, Dörner, JBT, Püschel, Zweibel, SNAS (2022)

 $\tau_{\rm d}$

3D Transport modeling of the PeVatron in the Galactic Center

3D B-field representation (Gündüz, JBT, et al (2022)); 3 source model; Anisotropic transport $(D_{\parallel}/D_{\perp} = \epsilon)$

Best fit for isotropic diffusion ($\epsilon = 1$)

2D distribution can be fit reasonably well using isotropic diffusion

September 05, 2024 Julia Tjus (RUB @ Gamma2024)

Application to plasmoids of AGN

Fig: Becker Tjus et al, MPDI Physics (2022)

Application to plasmoids of AGN

- Calculation of diffusion coefficient in equation of motion picture
- **As a function of reduced** rigidity (~energy)
- **Purely turbulent field** \rightarrow assumption of Bohm diffusion

Becker Tjus et al, MPDI Physics (2022)

Vladimir Kiselev, Bachelor thesis (2022), Masterthesis (ongoing) Marcel Schroller, PhD thesis (ongoing)

Comparison of results

Diffusive Regime (1e5 GeV)

Ballistic Regime (1e8 GeV)

Transition of diffusive to ballistic propagation: predicted break in gamma-ray spectrum

- \blacktriangleright Example R = 1e13m
- \blacksquare B = 0.03G
- \rightarrow change from diffusive to ballistic at around 1e13eV-1e15eV CR energy \rightarrow TeV-100TeV gamma-ray energy
- \rightarrow expected break in the spectrum

3. Summary & Conclusions

- **CRPropa 3.2** first tool to handle transport equation and equation of motion at the same time
- Now able to **quantiatively bridge diffusive and ballistic** regimes
- **Galactic cosmic-ray gradient** can be explained with a varying spatial diffusion coefficient
- **Diffuse Galactic Center PeVatron** can be explained with isotropic diffusion and the three most prominent sources
- Depending on source parameters, **break** between diffusive and ballistic propagation to be expected in future CTA data. Important to include in modeling, and search for with IACTs
- Gamma rays are great, but even better in the Multimessenger Picture \odot

