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Introduction

Why HE/VHE/UHE binary systems?

Ø Particle acceleration

o Around a compact object in the 
system (relativistic wind, jet, etc.)

o In a shock of winds within the binary 
system (relativistic or stellar)

Ø Photon field from companion to produce (anisotropic) Inverse Compton

Ø Matter field from stellar wind and/or decretion disk to have pp interactions

Ø Absorption due to photon field of the companion

(e.g., Dubus 2015, Bordas 2023 and references therein).
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X-ray binaries

Many ways to produce gamma rays… when 
the jet is active! X-ray states, transients!

Leptonic models: Inverse Compton
Ø Synchrotron Self Compton relativistic e-

in the jets with jet photons.
Ø External Compton: relativistic e- in the 

jets with photon field of companion star
(e.g., Atoyan & Aharonian 1999, Paredes et 
al. 2000, Georganopoulos et al. 2002)

Hadronic models: pp interactions and neutral 
pion decay
Ø Jet protons with companion stellar wind
Ø Jet protons with ISM
(e.g. Romero et al. 2003, Dermer & 
Böttcher 2006, Bosch-Ramon et al. 2006)

Mirabel (2006)
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X-ray binaries

Cygnus X-1. O9.7Iab with 21 M¤ BH at 2.2 kpc.
Ø GeV detection during low/hard (jet) state.

Orbital variability à anisotropic IC scattering
(Zanin et al. 2016, Zdziarski et al. 2017).

Ø TeV ULs when accumulating 40 or ~100 h
(Albert et al. 2007, Ahnen et al. 2017).

Ø TeV excess at onset of hard X-ray peak (4s
post-trial) (Albert et al. 2007).

Low/Hard state
Fermi/LAT
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Low/Hard state
MAGIC



X-ray binaries

Cygnus X-3. WR of ~12 M¤ with ~7 M¤ BH at 9 kpc.
Ø GeV detection during radio flaring periods

Orbital variability à anisotropic IC
(Tavani et al. 2009, Abdo et al. 2009).

Ø Jet i and orbital motion à GeV lightcurve
(Dubus et al. 2010, Bednarek 2010).
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X-ray binaries

Cygnus X-3. WR of ~12 M¤ with ~7 M¤ BH at 9 kpc.
Ø GeV detection during radio flaring periods

Orbital variability à anisotropic IC
(Tavani et al. 2009, Abdo et al. 2009).

Ø Jet i and orbital motion à GeV lightcurve
(Dubus et al. 2010, Bednarek 2010).

Ø ULs at TeV energies from ~60 h of
MAGIC obs. (Aleksic et al. 2010).
o Not very constraining.
o Cutoff ?
o gg absorption very relevant!
See also VERITAS ULs
(Archambault et al. 2013).
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X-ray binaries

Cygnus X-3. WR of ~12 M¤ with ~7 M¤ BH at 9 kpc.
Ø GeV detection during radio flaring periods

Orbital variability à anisotropic IC
(Tavani et al. 2009, Abdo et al. 2009).

Ø Jet i and orbital motion à GeV lightcurve
(Dubus et al. 2010, Bednarek 2010).

Ø ULs at TeV energies from ~60 h of
MAGIC obs. (Aleksic et al. 2010).
o Not very constraining.
o Cutoff ?
o gg absorption very relevant!
See also VERITAS ULs
(Archambault et al. 2013).

Ø SHALON results at 0.8-100 TeV?
(Sinitsyna & Sinitsyna 2022).

Ø UHE: Cyg X-3 in the core of Cygnus bubble
(LHAASO Collaboration 2024).
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X-ray binaries

SS 433. A-type supergiant orbited by ~BH at 5.5 kpc.
Super-Eddington accretion. Barion-loaded 0.26c jet.
Inside the W50 nebula, being distorted by jets.
Ø multi-TeV detection by HAWC, compatible with

leptonic scenario with e- energies up to ~>100 TeV
and B=16 µG (Abeysekara et al. 2018).
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X-ray binaries

SS 433. A-type supergiant orbited by ~BH at 5.5 kpc.
Super-Eddington accretion. Barion-loaded 0.26c jet.
Inside the W50 nebula, being distorted by jets.
Ø multi-TeV detection by HAWC, compatible with

leptonic scenario with e- energies up to ~>100 TeV
and B=16 µG (Abeysekara et al. 2018).

Ø TeV detection by H.E.S.S.
Energy range: 1-50 TeV.
At ~30 pc from the source
on both E and W.
Similar shape & spectrum.
Spatially consistent with
the extended non-thermal
X-ray jets.
(H.E.S.S. Collaboration
et al. 2024).
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X-ray binaries

SS 433. A-type supergiant orbited by ~BH at 5.5 kpc.
Ø Energy-dependent morphology points to leptonic origin for TeV emission

(advection and energy-dependent particle energy loss timescale).
Ø Gamma-ray emission: IC of synch. photons by relativistic e- up to 200 TeV.
Ø Shocks where flow velocity decreases to 0.08c

(H.E.S.S. Collaboration et al. 2024).
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X-ray binaries

V4641 Sgr. B star of ~3 M¤ with ~6 M¤ BH at 6 kpc.
Super-Eddington accretion. Superluminal 9.5c jets.
Ø multi-TeV detection significant above 100 TeV

One or two sources? Spectrum up to >220 TeV.
Projected in the plane of sky: 30 pc N, 55 pc S.
What is their real distance? Similar to SS 433?
(HAWC Collaboration 2024, talk by Casanova).
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X-ray binaries

V4641 Sgr. B star of ~3 M¤ with ~6 M¤ BH at 6 kpc.
Super-Eddington accretion. Superluminal 9.5c jets.
Ø multi-TeV detection significant above 100 TeV

One or two sources? Spectrum up to >220 TeV.
Projected in the plane of sky: 30 pc N, 55 pc S.
What is their real distance? Similar to SS 433?
(HAWC Collaboration 2024, talk by Casanova).

Ø TeV detection (talk by Olivera-Nieto).
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X-ray binaries
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Searches for TeV emission from other X-ray binaries with jets have been 
conducted (non-exhaustive list):

Ø Scorpius X-1 (Aleksic et al. 2011).

Ø GRS 1915+105 (Acero et al. 2009, Saito et al. 2009, Abdalla et al. 2018).

Ø V404 Cyg (Ahnen et al. 2017).

Ø Cir X-1 (Abdalla et al. 2018).

Ø MAXI J1820+070 (Abe et al. 2018).

Ø …



Gamma-ray binaries
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Spectral Energy Distribution 
(SED) maximum:

Accreting X-ray binary 
Cygnus X-3 at keV.

Gamma-ray binary
LS I +61 303 (probably not 
accreting) at MeV-GeV.

(Zdziarksi et al. 2011; 
Sidoli et al. 2006).

From Moldón (2012).



Gamma-ray binaries
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System HE VHE Star CO Porbit
LS 5039 Y Y ON6.5 V ? 3.9 d
LMC P3 Y Y O5 III ? 10.3 d
4FGL J1405.1-6119 Y - O6.5 III ? 13.7 d
1FGL J1018.6-5856 Y Y O6 V ? 16.5 d
HESS J1832-093 Y Y O6 V ? 86.3 d
LS I +61 303 Y Y B0 Ve PSR (269 ms) 26.5 d
HESS J0632+057 Y Y B0 Vpe ? 317 d
PSR B1259-63 Y Y O9.5 Ve PSR (47.7 ms) ~3.4 yr
PSR J2032+4127 ~Y Y B0 Vpe PSR (143 ms) ~50 yr

Basically: O6 III-V stars and B0 Ve stars.



Gamma-ray binaries
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Ø 9 binary systems detected at GeV and/or TeV energies: >10 TeV, ~100 TeV !
Ø 3 contain young non-accreting pulsars. The rest could be similar.
Ø Similar scenario as for PWN, but wind and photons from companion.
Ø Cometary tails detected in radio (VLBI).

LS I +61 303 cometary tail varying with 
orbital phase (Dhawan et al. 2006).



Gamma-ray binaries
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General observational properties:

Ø Binary system: massive O/Be star and compact object of unknown nature
(3 radio pulsars in PSR B1259-63, PSR J2032+4127 and LS I +61 303).

Ø Distances from few kpc to the LMC (50 kpc).

Ø Very different orbital configurations: periods from 4 d to 50 yr and
eccentricities from 0.3 to 0.95 à very different separations (0.1-100 AU).

Ø VLBI observations show extended, cometary tail-like morphologies,
sometimes forming bipolar structures like microquasars.

Ø The X-ray flux is modulated with the orbital period, but with
maximum¹periastron. No clear accretion signatures, no X-ray pulsations.

Ø GeV spectra can be fitted with a power law + exponential cutoff, like for
pulsar magnetospheres, but the emission is variable(!) and periodic.

Ø TeV emission is periodic and to first order correlated with X-ray emission.
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Simulations.
2D relativistic hydrodynamical simulations on the scale of the orbit of a
pulsar wind with interacting with a stellar wind (Bosch-Ramon et al. 2012).
Ø Particle acceleration and non-thermal emission in shock formed towards the

star and in strong shocks produced by the orbital motion (Coriolis shock).
Ø Strong instabilities lead to the development of turbulence and mixing.
Ø Doppler boosting will have significant and complex effects on radiation.

See also other works (Bosch-Ramon et al. 2015, Lamberts et al. 2011, 2012,
2013, Dubus et al. 2015, Huber et al. 2021a,b, Kissmann et al. 2023).

Tracer Density and velocity field
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PSR B1259-63. 2010 periastron passage by Fermi/LAT (Abdo et al. 2011).
Ø Marginal detection at periastron, huge GeV flare (only) afterwards!
Ø Nearly all the spin-down power is released in HE gamma rays.
Ø Doppler boosting suggested (Tam et al. 2011), but fine tuning is needed(!).
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PSR B1259-63. 2017 periastron passage by Fermi/LAT showed slightly
different results, with more structure, later flares 70 days after periastron and a
HE gamma-ray luminosity above the spin-down luminosity of the pulsar à
Doppler boosting is needed! (Johnson et al. 2017).
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PSR B1259-63. 2017 periastron passage by Fermi/LAT showed slightly
different results, with more structure, later flares 70 days after periastron and a
HE gamma-ray luminosity above the spin-down luminosity of the pulsar à
Doppler boosting is needed! (Johnson et al. 2017).
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PSR B1259-63. 2017 periastron passage by Fermi/LAT showed slightly
different results, with more structure, later flares 70 days after periastron and a
HE gamma-ray luminosity above the spin-down luminosity of the pulsar à
Doppler boosting is needed! (Johnson et al. 2017).

MW results of 2021 periastron passage (Chernyakova et al. 2024).
GeV flares in 2024 passage (Burnett et al. 2024, Martí-Devesa et al. 2024).
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LS 5039.
Ø Variable TeV emission with the orbital phase (Aharonian et al. 2006).
Ø Flux maximum at inferior conjunction of the compact object.
Ø g-g absorption (e+-e- pair production on stellar UV photons), which has an

angle dependent cross-section, plays a major role but…
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LS 5039.
Ø Variable TeV emission with the orbital phase (Aharonian et al. 2006).
Ø Flux maximum at inferior conjunction of the compact object.
Ø g-g absorption (e+-e- pair production on stellar UV photons), which has an

angle dependent cross-section, plays a major role but…

Ø … the flux should be 0 at periastron and superior conjunction, but it’s not!
Ø … the spectrum shows strong variability, but not at 200 GeV as predicted

by absorption models! (Dubus 2006, Böttcher 2007).
Cascading has to be modeled in detail (Khangulyan+ 2008, Cerutti+ 2010).
Phase-dependent e- acceleration? TeV emission produced away from CO?
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LS I +61 303.
MAGIC reported a correlation between X-ray and VHE gamma-ray emission
(Anderhub et al. 2009). This suggests leptonic processes are at work, and that
the X-rays are the result of synchrotron radiation of the same electrons that
produce VHE emission as a result of IC scattering off stellar photons.

VERITAS found a similar correlation with data 0.5 h apart, not with data within
24 h (Patel et al. 2022).
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Simulations.
Simulations of LS 5039 HE/VHE emission with 3D relativistic hydrodynamics.
Variability on timescales of 1 h reproduced (Kissmann et al. 2023).
These are complex systems.
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HESS J0632+057.
MAGIC/VERITAS/HESS around 450 h of TeV observations from 2004 to 2019:
Ø Orbital periodicity from VHE data.
Ø Spectra compatible with power-law, requiring a cutoff for orbital phases 0.2-0.4.
Ø Clear X-ray/TeV correlation with non-zero X-ray flux when TeV emission 

disappears (as for LS I +61 303) (Adams et al. 2021).
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HESS J1832-093.
NIR observations reveal another O6V star. Distance around 6.7 kpc.
Ø Apparent grouping around this spectral type for the known gamma-ray

binaries with an O-type star.
Ø This may be due to the interplay between the initial mass function and the

wind momentum–luminosity relation (van Soelen et al. 2024).
Ø Should we focus around this spectral type when searching for new systems?



Gamma-ray binaries
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Searches for new gamma-ray binaries (non-exhaustive list):

Ø Fermi/LAT periodicity searches: previous successful discoveries include 
1FGL J1018.6-5856, LMCP3 and 4FGL J1405.1-6119 (Fermi LAT 
Collaboration et al. 2012, Corbet et al. 2016, Corbet et al. 2019).

Ø Runaway massive stars from Gaia DR3 (Carretero-Castrillo, Ribó, 
Paredes 2023).

Ø Obscured massive stars (Martí & Luque-Escamilla, poster at this 
conference).

Ø …

Ø CTA in the future



Colliding-wind binaries
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Eta Carinae
Ø Fermi/LAT data during 12yr show 5.5 yr orbital variability in Eta Carinae.
Ø This can be understood and interpreted in a colliding-wind binary scenario for

orbital modulation of the gamma-ray emission.
Ø The lightcurves change from cycle to cycle.
Ø The spectral shape in each periastron passage is different.
Ø These facts strongly suggest that the wind collision region of this system is

perturbed from orbit to orbit, affecting particle transport within the shock
(Martí-Devesa & Reimer 2021).

0.1-10 GeV 10-500 GeV



Colliding-wind binaries
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Eta Carinae
Ø HESS detected VHE g-ray emission from Eta Carinae close to periastron.
Ø The source is point-like and the spectrum is best described by a power law.
Ø The γ-ray spectrum extends up to at least ∼400 GeV.
Ø In a leptonic scenario this implies B < 0.5 G in the emission region.
Ø No indication for phase-locked flux variations is detected in the HESS data.
(HESS Collaboration, Abdalla et al. 2020).



Novae
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RS Oph
MAGIC, HESS, LST have reported VHE emission from the recurrent nova RS
Oph (Acciari et al. 2022, Aharonian et al. 2022, Aguasca-Cabot et al. 2022).

Modelling of the 
VHE and HE 
Fermi/LAT data 
clearly support 
hadronic emission 
processes.



Ø X-ray binaries are now well stablished ~100 TeV emitters in reacceleration
jet regions (SS 433, V4641 Sgr?). Leptonic emission favored. Hints of fast
TeV variability in some sources? (Cyg X-1).

Ø Gamma-ray binaries showing a diversity of behaviors with emission up to
~100 TeV with no cutoff. Leptonic emission favored.

Ø More and more evidence of clustering around O or Be stars with young non-
accreting pulsars. What is their real population? Searches for new gamma-
ray binaries ongoing.

Ø Novae discovered a few years ago at VHE. Hadronic emission favored.
Will T CrB finally explode? Many physical parameters could be constrained
in such nearby system.

Ø Colliding-wind binaries also in place but need CTA to make real progress.

Conclusions
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