Observation of a second spectral component in GRB 221009A

- Biswajit Banerjee

Based on:

- **BB**, Macera, .. Oganesyan et al. 2024; arXiv: 2405.15855

- Macera, **BB**, Mei, Oganesyan .. et al. in preparation

Gamma-2024, Milan

TeV GRBs

GRBs	Time (t-T _o)	0.2 keV	10 keV	100 keV	1 MeV	100 MeV	10 GeV	100 GeV	1 TeV
GRB 180720B	~10 hr							H.E.S.S.	
GRB 190114C	68–110 s	XRT	GI	B <mark>M</mark> BAT		L	AT		2
	110–180 s	XRT	GI	B <mark>M</mark> BAT		L	AT	MAGIC	<u>p 2 0</u>
GRB 190828A	4.3–7.9 hr	XRT				L	AT		
	27.2–31.9 hr	XRT				L/	AT	H.E	.s.s.
GRB 201216A	60–1.2 ks	XRT				L	AT	MAGIC@20	

MAGIC Collaboration:

Nature v. 575, p. 455–458 (2019) and Nature v. 575, p. 459–463 (2019) H.E.S.S. collaboration, Nature, 2019 H.E.S.S. collaboration, Science, 2021 MAGIC Collaboration, MNRAS, 2024

TeV GRBs

L. Nava's plenary talk

GRBs	Time (t-T ₀)	0.2 keV	10 keV ′′	100 keV 1 Me	eV 100 MeV	10 GeV	100 GeV 1 TeV
GRB 180720B	~10 hr	?	?	?		?	H.E.S.S
GRB 190114C	68–110 s	XRT	GBM BAT	?	LAT	(~3σ)	
	110–180 s	XRT	GBM BAT	?	LAT	(~5 σ)	MAGIC@20
GRB 190829A	4.3–7.9 hr	XRT	- ?	?	LAT	(U.L.)	
	27.2–31.9 hr	XRT	- ?	?	LAT	(U.L.)	H.E.S.S.
GRB 201216A	60–1.2 ks	XRT	?	?	LAT	(U.L.)	MAGIC @ 20

MAGIC Collaboration:

Nature v. 575, p. 455–458 (2019) and Nature v. 575, p. 459–463 (2019) H.E.S.S. collaboration, Nature, 2019 H.E.S.S. collaboration, Science, 2021 MAGIC Collaboration, MNRAS, 2024

GRB 221009A; BOAT (Brightest Of All Time^{*})

Z~ 0.15 LHAASO Collaboration, Science (2023) Tavani et al 2023 ApJL 956 L23, 2023

Bissaldi et al 2023: https://pos.sissa.it/444/847/

Frederiks et al 2023 ApJL, 949, L7 (2023)

Lesage et al 2023, ApJL 952 L42

*Burns et al 2023, ApJL 946 L31

GRB 221009A; MWL data

GRB 221009A: GBM light curve

Lesage et al 2023, ApJL 952 L42 Burns et al 2023 ApJL 946 L31 Ravasio et al 2023, Science

MWL spectrum; 600-800 s (after T_{0, GBM})

LHAASO Collaboration, Science (2023)

Tavani et al 2023 ApJL 956 L23, 2023

Lesage et al 2023, ApJL 952 L42

Burns et al 2023 ApJL 946 L31

Non standard GBM analysis:

Time resolved spectra of GRB 221009A

Homogeneous medium

SSC: LeHaMoC; Stathopoulos et al 2023

Miceli and Nava 2022 (+references therein)

Parameters	Priors	Posteriors
$\log_{10}(B) [G]$	(-5; 2)	$-1.3^{+0.8}_{-0.4}$
$\log_{10}(\gamma_m)$	(0; 5)	$1.5^{+0.9}_{-1.0}$
$\log_{10}(\gamma_{max})$	(4; 8)	$6.3^{0.1}_{-0.2}$
$\log_{10} l_{ m e}$	(-7; -1)	$-2.8^{+0.6}_{-0.4}$
p	(2;3)	$2.6^{+0.1}_{-0.4}$
$\log_{10} D$	(1; 4)	$2.5^{+0.1}_{-0.3}$

Extract microphysical parameters from bin 12

Homogeneous medium

SSC: LeHaMoC Stathopoulos et al 2023

Miceli and Nava 2022 (+references therein)

Extract microphysical parameters from bin 12

Homogeneous medium

SSC: LeHaMoC Stathopoulos et al 2023

Extract microphysical parameters from bin 12

Miceli and Nava 2022 (+references therein)

Nature of the early GeV emission

Macera, BB et al, in preparation

- For some GRBs early GeV emission follows variability of prompt [Zhang et al. 2011]
- Early Afterglow or Prompt origin?
 Ghisellini et al. 2009, Kumar & Barniol Duran, 2009
 Maxham et al. 2011
 - What is the contribution of the keV-MeV prompt?
- Prompt second component?

For a complete review see: **Nava, 2018** and the references therein

Results of the time-resolved spectral analysis

Sample divided in two groups

 High-Energy emission dominated by synchrotron

See also Ravasio et al 2023

Observation proposal to MAGIC

Catch me if you can- Hunt for the early TeV emission with MAGIC and Fermi GBM

Abstract

The prompt or early emission of gamma-ray bursts in the VHE regime remains largely unexplored due to challenges, such as short GRB durations and delays between triggers and notices. This study proposes an innovative approach: rapidly following Fermi Gamma-ray Burst Monitor (GBM) triggers to scan the sky-localization with a short exposure of 10 seconds. In addition, consider the follow-up GCN notice to obtain improved sky-localization. Anticipate about 30 follow-ups per year with the duty cycle of MAGIC as 10 percent, simulations indicate a coverage rate of about 0.1 - 0.8 GRB per year following the first Gamma-ray Coordinates Network (GCN) circular, increasing to about 1.0 - 2.8 GRB coverages per year with improved sky-localization from the second GCN circular.

Stamerra, Antonio institute: INAF, Roma

Summary:

- GRB 221009A is a special case with clear double hump.
- The available MWL data makes it possible to put constraints on the micro-physical parameters.
- GeV detections (LAT and AGILE) were crucial to establish the presence of the second component.
- The nature of the previous MWL data with GBM/LAT is important
- Observational proposals are in place to detect early VHE emission in the future.

More!

Early GeV emission and physics of prompt

Extend energy band to Fermi-LAT energy range cutoff \rightarrow total energy range covered: 8 keV - 10 GeV Synchrotron*HE E F_E Use a physical model for the prompt emission → adopt physical models based on synchrotron vE, 2- 22 2-3 Ey E. 2- d. exp Er Ev Power FERM - GBM Swift-XRT nchrotron ~200 KeV optical ~ 20 NeV E.

Why is it more informative? GRB 190114C

Sample selection

- <u>At least three</u> significant temporal bins (>5 σ detection) simultaneous with Fermi-GBM
- GRBs with and without redshift up to year 2023
- At least 20 photons within 10° of region of interest around the GRB location
- GBM + LLE (when possible) + LAT

Sample 1

Time resolved spectral analysis of 14 GRBs, 80 spectra

- <u>One</u> significant temporal bins (>5 σ detection) simultaneous with Fermi-GBM
- GRBs with and without redshift up to year 2023
- At least 20 photons within 10° of region of interest around the GRB location
- GBM + LLE (when possible) + LAT

Sample 2

Spectral analysis of 66 GRBs

Total of 80 GRBs analysed in the energy range 8 keV - 10 GeV

Why is it more informative? **GRB 190829A**

H.E.S.S. Collaboration 2021

z~ 0.08

Why is it more informative? GRB 201216C

MAGIC Collaboration 2024

z~ 1.1

