The dynamical impact of cosmic rays in Milky Way-like galaxies

Karin Kjellgren **Institute of Theoretical Astrophysics (ITA) University of Heidelberg, Germany**

> GAMMA 2024 Symposium **September 2, 2024**

UNIVERSITÄT **HEIDELBERG** ZUKUNFT SEIT 1386

ZENTRUM FÜR **ASTRONOMIE**

The Rhea-simulations of Milky Ways

Arepo: Springel (2010), Weinberger et al. (2020) **CRs:** Pfrommer et al. (2017) Streaming: Wiener et al. (2013), Buck et al. (2020)

- Isolated, Milky Way-like galaxies
- $10^{12} M_{\odot}$ halo mass
- CRs: advection + anisotropic diffusion ($\kappa = 4 \cdot 10^{28} \text{ cm}^2 \text{ s}^{-1}$), emulate streaming losses
- B-field strength: 3nG ("-low") or 3µG
- Evolved for 2 Gyr

Known in more simplified setups: e.g. Ruszkowski & Pfrommer (2023)

No outflows without CRs

CRs launch outflows from the entire galactic disk

Gamma emission from CR protons

y (kpc)

(kpc)

N

- Gamma emission from neutral pion decay of primary protons
- Calculated with CRAYON code, assumes steady-state
- Can see many details in the gamma emission - varies with position and time

CRAYON: Werhahn et al. (2021b, 2023)

Gamma emission from CR protons

- Adiabatic CRs: $e_{\rm cr} \propto \rho^{4/3}$
- Deviation due to non-adiabatic interactions and fast diffusion
 - (See e.g. Girichidis et al. 2024)
- Gamma rays show a big dynamic range, shining primarily in the atomic phase

"Fermi"/"eROSITA"-bubbles The importance of details in the galactic center

Periodically launched, short-lived (~20 Myr) outflows from the center

• Outflow bubbles visible in X-rays but not gamma rays \rightarrow due to missing leptonic gamma rays

Conclusions

- CRs can launch outflows from Milky Way galaxies
- Outflows are launched from the entire disk, but weak
- Gamma rays: big dynamic range + strong time variations
- CRs strongly **non-adiabatic** (diffusion, gamma rays, ...)
- Accurate MW potential \rightarrow Fermi/eROSITA bubbles, short-lived outflows
 - Visible in X-rays but not in gamma rays, due to missing leptonic component

Extra slides

More accurate coupling CR ⇔ gas+B

CRs: back-reaction onto B-field, gyro-resonances
⇒ no simple diffusion

 \Rightarrow complex transport (E-transfer $E_{cr} \leftrightarrow E_{mag}$)

- Streaming instability (Kulsrud+1975)
- bulk of CRs streams with Alfvén speed, Alfvén heating
- equate growth and damping (Wiener+ 2013)

depend on effective turbulence model, effective B-field $\delta B/B$, fixed B spectrum

- new self-consistent PIC models (Shalaby et al. 2021/2023)
- \Rightarrow many unknowns concerning
 - transport speeds

 $\Gamma_{\rm growth} = \Gamma_{\rm NLLD} + \Gamma_{\rm in}$

 $\Rightarrow H = -\mathbf{v}_{A} \cdot \nabla P_{cr}$

- energy exchange

Thomas, CP, Enßlin (2020)

sketch: Jacob

More accurate coupling CR ⇔ gas+B

- new approach in fluid approximation
- Thomas+ 2019,2021,2022:
 - follow CR energy AND energy in magnetic waves

CR energy [erg]

Thomas et al. 2022

