Very high energy observations of BNS and BHNS mergers in the Einstein Telescope era

Alberto Colombo - Om Sharan Salafia - Giancarlo Ghirlanda - Monica Colpi

Background

- The current generation of **very high energy (VHE)** detectors have demonstrated the ability to detect the **GRB afterglow**
- The BNS merger GW170817 marked the beginning of **multi-messenger astronomy** with GWs, but no VHE emission was discovered
- The **Cherenkov Telescope Array (CTA)** will be able to detect GRB candidates with unprecedented sensitivity
- The third generation GWs detectors, such as **Einstein Telescope (ET)**, will greatly expand the GW horizon, enabling the detection of more sources

GRB model

Here we study the number and the properties of BNS and BHNS mergers in the ET era, with a specific focus on the potential detection of VHE afterglows in synergy with **CTA**

For the SSC modeling see App. C in Salafia+22

Building a multi-messenger population

with semi-analytical models

Preliminary results

- Multi-messenger observations will be **routine**, probing BNS and BHNS at cosmological distances
- The majority of short **GRB**s will have a **GW counterpart**
- **VHE** afterglow + GW rates are low (~ 10^{-1} y⁻¹) reflecting the faintness of these components for the **CTA** sensitivity
- We find a similar GW rates for **BHNS**, but lower EM+GW rates because just **2-10%** of the binaries can power EM emissions
- We will perform variations on the VHE afterglow models to study the effect on the rates
- Our model can be applied to **specific EM facilities**

Contact: alberto.colombo@inaf.it