A study of the very-high-energy emission of the Crab pulsar with the LST-1

Álvaro Mas-Aguilar (GAE-UCM), Marcos López-Moya, Rubén López-Coto for the CTAO-LST Project

8th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (03/09/2024)

This work was conducted in the context of the CTA-LST Project. We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments

High-energy Pulsars

Pulsars are highly magnetized neutron stars in rapid rotation. They emit pulses of radiation from radio up to gamma-rays.

- Pulsars discovered in radio in 1967. Most of them emit in radio.
- A bunch of them detected in visible (~10) and X-rays (~100)
- In gamma-rays, almost 300 pulsars have been detected by Fermi-LAT since 2008!
- In VHE gamma-rays, only 3+1 pulsars detected

Third Fermi Large Area Telescope catalog of gamma-ray pulsars

Abdo, A .et al.. (2013). The Astrophysical Journal Supplement Series, 208(2), 17.

High-energy Pulsars

Fermi-LAT pulsar features 100 MeV < E < 10 GeV

High-energy Pulsars

Gamma-ray classical models: Ω Light α B Cylinder polar The MeV-GeV gamma-ray emission is due to $\nu \rightarrow e^{\pm}$ synchro-curvature radiation slot gap Their spectra usually follow a **power law (PL)** with exponential cutoff at a few GeV. outer $\gamma\gamma \rightarrow e^{\pm}$ null charge surface $\Omega \cdot B = 0$ gap closed field region b>1 $\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-\Gamma_1} \cdot \exp\left(\left(\frac{E}{E_c}\right)^b\right)$ b~1 b<1

• Very weak emission expected above 50 GeV

Up to what energies do pulsars emit?

- Fermi-LAT limited by statistics above ~50 GeV
- Pulsars detected with IACTs (E>20 GeV)
 - Crab by MAGIC, VERITAS Ο
 - Vela by HESS 0
 - Geminga by MAGIC 0
 - PSR B1706-44 by HESS (4.7σ) 0
- Power-law spectral tails extending beyond the • predicted cutoffs
- The first two detected up to TeV energies

Observing pulsars at TeV

Crab Pulsar

P2 detected up to 1.5 TeV

1 single continuous component

TeV emission up to 20 TeV.

2 components: 1) E < 100 GeV 2) E > TeV

Vela Pulsar

- Impossible to emit TeV photons via synchro-curvature radiation
- Possibility: Inverse Compton on soft photon fields (outside or inside magnetosphere?)

The Cherenkov Telescope Array Observatory (CTAO)

Increase sensitivity needed to detect more pulsars! Two different sites: La Palma (Spain), Chile **CTAO:** New generation of IACTs Three kinds of telescopes of different sizes: LABORATION Northern Array 10^{-10} TAO Southern Arra 10 10^{-13} SSTs MSTs LSTs Differential flux sensitivity (50 h (23-m diameter) 10^{-2} 10^{-1} 10^{2} 10 Reconstructed Gamma-ray Energy E_p (TeV)

 E^2 x Flux Sensitivity (erg cm⁻² s⁻¹)

1 operating, 3 more already being built in La Palma 7

The First Large-Sized Telescope (LST-1)

Prototype of the CTAO LSTs Comissioning since 2019. Taken more than 2000 ime (h) • hours of data Already producing first scientific results LST-1 telescope in La Palma, Spain Credit: María Lainez (UCM-GAE)

Ideal to study gamma-ray pulsars:

- 1) Optimized for lowest energies
- 2) Threshold about 20 GeV
- 3) Good energy overlap with Fermi-LAT

Crab pulsar study with the LST-1

Tobs = 103 h (Zd < 50 deg)

1) Observations performed:

Crab pulsar observed during the LST-1 commissioning (Sept 2020 to Jan 2023).

2) Motivations for the pulsar study:

- a) Prove the potential of LSTs to study gamma-ray pulsars
- b) Phenomenological study of its gamma-ray emission

LST-1 results published: "A detailed study of the very-high-energy Crab pulsar emission with the LST-1": <u>doi.org/10.48550/arXiv.2407.02343</u>

Crab pulsar study with the LST-1

3) Data sample for the analysis:

- Include data up to Zd = 50 deg (~25 h at Zd > 35 deg)
- Strong quality selection of the data to reduce the energy threshold

Crab Pulsar results: Phaseogram

P1 + P2 detected at > 15 σ in 100 h Similar to best former MAGIC results but with only one telescope! MAGIC Sumtrigger-II: Ceribella, Giovanni et al. PoS ICRC2019 (2021) 645 304000 OFF **Bridge** OFF **P2 Bridge** 303000 Tobs=103.6 h Zd < 50 deg **P1**: 10.5σ 302000 **P2**: 12.1σ **P1 + P2**: 15.2σ 301000 Bridge: 5.70 Events 300000 299000 298000 297000 296000 0.25 1.75 0.00 0.50 0.75 1.00 1.25 1.50 2.00 Pulsar phase

Crab Pulsar results: peaks morphology

Note: New *Fermi*-LAT analysis of ~14 yrs.

Peak widths:

Energy (GeV)	μ_1	FWHM ₁ ($\cdot 10^{-2}$)	μ_2	FWHM ₂ (·10 ⁻²)
20 - 33	0.999 ± 0.003	3.1 ± 0.6	0.389 ± 0.004	5.4 ± 1.1
33 - 55	1.0000 ± 0.0018	2.2 ± 0.4	0.387 ± 0.003	4.4 ± 0.8
55 - 92	0.994 ± 0.005	4.0 ± 1.1	0.388 ± 0.006	5.5 ± 1.3
92 - 153	1.0020 ± 0.0022	1.5 ± 0.5	0.402 ± 0.004	3.6 ± 1.0
153 - 253	1.015 ± 0.009	3.7 ± 2.2	0.3981 ± 0.0017	1.9 ± 0.7

- Peak location does not change significantly
- P1 width drops until 10 GeV. No significant variation beyond (limited by statistics due softer spectrum)
- P2 width decreases above 2 GeV

Crab Pulsar results: peaks morphology

Note: New *Fermi*-LAT analysis of ~14 yrs.

P1/P2 ratio:

- P1/P2 ratio declines up to 100 GeV
- Constant (P1/P2 ~ 0.5) at > 100 GeV

Crab Pulsar results: LST-1 SED

- P1 SED follows power-law models up to 450 GeV (P1) and 700 GeV (P2)
- P2 harder than P1 (known feature)
- Confirms MAGIC results above 500 GeV

Systematic uncertainties in Γ of ~10% for P1 and ~5% for P2. Accurate characterization of the pulsar at low energies!

Crab Pulsar results: light curve

• No hint of variability in the sample

Crab Pulsar results: LST-1 + Fermi SED

Bridge SED

- Defined as region between peaks
- Detected up to 100 GeV. Beyond the signal is very weak (< 1.5 σ)
- Power-Law with Γ = 3.5 ± 0.4
- Lack of statistics to reject the existence of strong cutoff

Conclusions

The CTAO will explore VHE pulsar population:

- VHE pulsar gamma-ray emission requires new models involving Inverse Compton processes.
- The LSTs' low-energy threshold improves sensitivity to study pulsars.

Crab Pulsar detected at 15 σ in ~ 100 h.

- P1, P2 SED from 20 GeV to hundreds of GeV.
- Pulse peak morphologies from 100 MeV to 200 GeV.
- LST-1 SED bridges completely with Fermi-LAT.
- Excellent performance at low energies for pulsar observations.

Another pulsar already detected with LST-1! See next presentation by P.K. Yeung

BACKUP

- Pulsation detected above 400 GeV
 P1 detected up to 0.6 TeV
 P2 detected up to 1.5 TeV
- Power Law extension for both peaks.
- Detection of TeV photons impossible to reach via synchro-curvature mechanism
- Synchrotron-curvature ruled out: IC on soft photon fields

- Curvature of P2 favoured at $>3\sigma$ level
- Clear hint of TeV emission: hint of a second componente

H. Abdalla et al. (H.E.S.S. collaboration) A&A 620, A66 (2018)

- Curvature of P2 favoured at $>3\sigma$ level
- Clear hint of TeV emission: hint of a second componente

A. Djannati-Ataï, Texas Symp. 2017

PSR B1706-44

arXiv:1908.06464

Spir-Jacob et al. (for the H.E.S.S. collaboration) arXiv e-prints,

Detected at 4.7σ. Not possible to reject or accept/reject a cut-off or Power Law extension

MAGIC Collaboration, V. A. Acciari, et al. A&A 643 L14 (2020)

 Transition between CR radiation by positrons to IC radiation by electrons accelerated towards the star.

Data analysis: MC data and software

MC production:

- We used MC production at dec 22.76
- NSB tuned for the sky region
- Produced with spectral index **Γ**~-2
- Different MC test nodes for each run (based on nearest distance)
- Ephemeris from the Jodrell Bank Observatory

Software versions of the analysis:

- PINT v0.9.7
- lstchain v0.10
- Gammapy v0.20.1

For more details see: H. Abe *et al* 2023 *ApJ* **956** 80 (10.3847/1538-4357/ace89d)

Crab Pulsar results: Phaseogram vs Energy

Data analysis: quality cuts

Quality cuts:

- Cut on pedestal charge standard deviation (removes moon data)

Data analysis: quality cuts

Quality cuts:

- Cuts based on the cosmic rates, pixel rates, etc.

 Hadronic rejection: energy dependent gammannes and alpha cuts (MC eff 70%)

Intensity > 80 p.e. (bef Aug2021),
 intensity > 50 p.e (afterwards)

Data analysis: source-dependent analysis

Used source-dependent approach:

- Include source-dependent parameters in the Random Forests
- Improve performance of pulsar analysis at low energies.
- Source position needs to be known a priori

Energy threshold for the Crab pulsar spectrum

- Distribution of true energy of the MC that survives the cuts
- Assumed SED of spectral index ~ (-3)
- Lower for steeper spectra (e.g. Geminga pulsar)

Systematic uncertainties of the analysis

Tests:

- Study of the SED of two different subsamples
- Study the effect of the MC cut efficiency on the SED
- Study the effect of shifting the true energy of the MC by a factor
- Study the effect of using an slightly different RF

Systematic uncertainties of the analysis

Tests:

- Study of the SED of two different subsamples
- Study the effect of the MC cut efficiency on the SED
- Study the effect of shifting the true energy of the MC by a factor
- Study the effect of using an slightly different RF

Peak	Trigger threshold	Even selection cuts	Energy bias	Software versions		
Maximum error in the spectral index						
P1	8.0 %	2.2 %	1.7 %	0.5 %		
P2	2.2 %	5.9%	0.5%	2.6 %		
Maximum error in the flux						
P1	30%	10 %	17 %	0.1%		
P2	8 %	5 %	13 %	1.3 %		