SST Programme

The Small-Sized Telescopes of CTAO: status and future development

Gianpiero Tagliaferri on behalf of the CTAO SST Consortium

CTAO

SST COLLABORATION

The CTAO in context (alpha configuration performance)

3 types of telescopes:

- LST (23m diameter)
- MST (12 m diameter)
- SST (4m diameter)

CTAO-N => 4 LST + 9 MST

CTAO-S => 14 MST + 37 SST

(from Italian PNRR: +2 LST + 5 SST)

The CTAO in context (alpha configuration performance)

SST: a dual-mirror Cherenkov telescope CTAO SST COLLABORATION

Segmented primary mirror design

The SST optical system is based on a slightly modified dual-mirror Schwarzschild-Couder design

Top level SST Telescope Requirements

	Smal-Sized Telescope (SST)
Required energy range	1 Tev - 300 TeV
Energy range (in which subsystem provides fully system sensitivity)	5 TeV - 300 TeV
Number of telescopes	37 (South) alpha configur 0 (North)
Optical Design	Schwarzschild-Couder
Primary reflector diameter	4.3 m
Secondary reflector diameter	1.8 m
Effective mirror crea (including shadowing)	>5 m2
Focal lenght	2.15 m
Total weight	17.5 t
Field of view	8.8 deg
Number of pixel in SST-CAM	2048
Pixel size (imaging)	0.16 deg
Photodetector type	SiPM
Telescope data rates (before array trigger)	>600 Hz
Telescope data rates (readout of all pixels; before array trigger)	2.6 Gb/s
Positioning time to any point in the sky (>30° elevation)	90 s
Pointing Precision	< 7 arcsecs
Obsevable sky	Any astrophysical object with elevation > 24 degrees

SST: the actors

•

•

•

8th Heidelberg Symposium 7

Industrial Contracts Status

SST-MEC Tender #1: INAF 25 SST-MEC + Telescopes Integration

- selected the Dal Ben company
- The contract has been signed with Kick-Off on June 3rd, 2024, activities ongoing
- <u>Next important milestone is the CDR (December 2024/January 2025)</u>

SST-MEC Tender #2: CNRS 12 SST-MEC + Telescopes Integration•call for tender to be issued by the end of 2024

SST-OPT Tenders (INAF):

- Primary mirrors (M1):
- Secondary mirrors (M2):

selected the Media Lario Company, the activities have just started contract is on going (for the first five mirrors)

SST Programme Status

8th Heidelberg Symposium 10

SST baseline configuration

- The SST baseline configuration selected by CTAO in 2020 is based on:
 - The ASTRI-Horn prototype + the modifications introduced for the development of the ASTRI-Mini Array
 - The SST-CAM, that is an evolution of the CHEC-S camera
 - and implementing:
 - The condition/requirement for operating within CTAO
 - Possible further optimization of the mechanical design of the M1 dish

SST: input from ASTRI-Horn and ASTRI-MA, lessons learnt and solutions directly tested

SST: input from ASTRI-Horn and ASTRI-MA, lessons learnt and solutions directly tested

RI-Horn and ASTRI-MA, solutions directly tested

RI-Horn and ASTRI-MA, solutions directly tested

Single container: structure+M1

 Dimensioni letterne:

 40⁶ hgh cube 01: 526 x 2300 x 12 000 mm

 40⁶ cape to: 5250 x 2300 x 12 000 mm

 Si useranci ocative cape to, gai cape to the dimensioni dell'opertura del tetto:

 Dimensioni 40⁰ mp cube 01: 2260 x 2100 mm

 Dimensioni 40⁰ mp cube 01: 2260 x 2190 mm (lettaza x largheza) x 11500 mm

 Dimensioni 40⁰ mp cube 20: 2260 x 2190 mm (lettaza x largheza) x 11500 mm

 Si useranci ocative to; 2300 x 2190 mm (lettaza x largheza) x 100 mm

SST on-site integration plan

Feedback to SST from ASTRI-MA on-site integration

- 1. Install the telescope base, that includes the AZ fork & AZ motors, the electric cabinets and the EL actuator
- 2. Perform the base levelling and grouting
- 3. Assemble M1 dish
- 4. Install M1 dish
- 5. Assemble & install the OSS structure
- 6. Install the M2 support structure & Pointing Monitoring Camera
- 7. Install the counterweights
- 8. Install the M1 segments and actuators

CTAO SST COLLABORATION

SST-CAM Overview

- Development based on 2 prototypes
 - CHEC-M (MAPMs)
 - CHEC-S (SiPMs)
- Low Cost, High Performance
 - Fine pixelation, large FoV
 - 32 modules of 64 pixels each
 - Tile on a radius of curvature of 1 m
 - 6 mm x 6 mm (~0.15°) pixels
 - 2048 SiPM pixels
 - 9º FoV
 - Efficient trigger & full waveform readout
 - @1GSa/s for all pixels in every event
 - Max readout rate: 1200 Hz
 - Continuous measurement of DC light
 - NSB estimation & astrometry

SST-CAM Camera Design

18

SST-CAM Key Components

Camera Design & Development

Mechanical CAM mounted on ASTRI-1 in Tenerife (November 2023)

SST-CAM Next Steps

- Autumn
 - Delivery of Quarter Backplane (supports 8 TARGET modules) with first FW release
 - Quarter Camera (QCAM) assembly setup complete
 - Production of first full (Engineering)
 Camera ECAM TMs in Germany
 - Send chiller & other support items to Tenerife
- By end of 2024
 - Quarter Camera (QCAM) build and test
 - Design for ECAM complete
 - Many parts for ECAM (and even batch 1) ordered or in hand
- 2025
 - On-sky tests with QCAM
 - ECAM build and test

Practice of QCAM focal plane assembly.

Final design of liquid cooled camera focal plane, with window assembly

SST Programme Status

Conclusions

- SST baseline based on ASTRI-HORN+CHEC-S camera
- Upgrades on the electromechanical structure already introduced in the ASTRI-MA project
- Significant upgrades introduced in the SST-CAM after the CHEC-S prototype
- Further modifications introduced during the Bridging Phase, in particular on the M1 dish, and approved at the PDR (Preliminary Design Review) by CTAO
- Industrial contract assigned and ongoing to derive the final SST electromechanical structure design to be approved at the CDR (Jan 2025) by CTAO
- Good feed-back from ASTRI-MA development (on the structure, integration, transportation, etc)
- SST-CAM development is well under way, including the production of a QCAM by the end of 2024 and an engineering camera by mid-2025
- Finalisation of I/F definition, maintenance, on-site integration, logistic options are ongoing with CTAO