Institute of **MARÍA Space Sciences**

Concurrent spectral and light curve synchro-curvature modelling of

pulsars

Co-authors: Diego F Torres, Daniele Viganò Daniel Íñiguez-Pascual, Institute of Space Sciences ICE-CSIC

8th Heidelberg International Symposium on High-Energy Gamma-ray Astronomy (Γ-2024)

2-6 September 2024 - Milano, Italy

Motivation of the project

● High-energy pulsars are those with detected pulsated high-energy emission, gamma-rays and X-rays.

Credit: NASA/Fermi

[Goldreich & Julian (1969); **Spitkovsky** (2006)]

MULTIMESSENGER

Motivation of the project

Models can be tested with e.g. the data of the gamma-ray emitting pulsars released in the 3PC (Smith et al. (2023))

Our goal is to reproduce observational data with a model that contains simple but realistic physics and is computationally affordable

Spectral model: particle dynamics

- We follow the dynamics of the emitting particles, ruled by electric acceleration and synchro-curvature losses and with two free parameters involved: E_{\parallel} , b
- Solving the equation of motion gives the evolution of the relativistic momentum and of the Lorentz factor Γ and pitch angle α

Daniel Íñiguez-Pascual - 5

ECSIC LEEC⁹

Spectral model: particle dynamics

● Power of synchrotron and curvature radiations depend on the Lorentz factor Γ of particles differently

$$
P_{syn} = \frac{2}{3} \frac{(Ze)^4 B^2 (\Gamma^2 - 1) \sin^2 \alpha}{m^2 c^3}
$$
\n
$$
P_c = \frac{2}{3} \frac{(Ze)^2 c \Gamma^4}{r_c^2}
$$
\n
$$
\Gamma \sim 10^7
$$
\n
$$
\overrightarrow{P}
$$
\n
$$
P_c = \frac{2}{3} \frac{(Ze)^2 c \Gamma^4}{r_c^2}
$$
\n
$$
\Gamma \sim 10^7
$$
\n
$$
\overrightarrow{P}
$$
\n
$$
P_c = \frac{2}{3} \frac{(Ze)^2 c \Gamma^4}{r_c^2}
$$
\n
$$
\Gamma \sim 10^7
$$
\n
$$
\overrightarrow{P}
$$
\n
$$
P_c = \frac{2}{3} \frac{(Ze)^2 c \Gamma^4}{r_c^2}
$$
\n
$$
\Gamma \sim 10^7
$$
\n
$$
\overrightarrow{P}
$$
\n
$$
P_c = \frac{2}{3} \frac{(Ze)^2 c \Gamma^4}{r_c^2}
$$
\n
$$
\Gamma \sim 10^7
$$
\n
$$
\overrightarrow{P}
$$
\n
$$
E_{\parallel}
$$
\n
$$
Vigano et al. 2015, MNRAS, 447, 1164
$$

 $0/7$ 2π

Spectral model: emission

- Synchro-curvature formulae gives the emission of the particles all along the trajectory, which convolved with an effective particle distribution gives the total radiation from the emission region
- We produce theoretical spectra with just three free parameter (E_{\parallel} , b, x₀) and a normalization factor

Spectral fitting

[Viganò et al. 2015, MNRAS, 453, 2599; Íñiguez-Pascual et al. (in prep.)]

- The model successfully fitted the 117 gamma ray-pulsars on the 2PC (Abdo et al. (2013)) The model successfully fitted
the 117 gamma ray-pulsars on
the 2PC (Abdo et al. (2013))
and the ~300 gamma-ray pulsars on the 3PC (Smith et al. (2023))
- A relevant synchrotron contribution is needed to match gamma-ray spectra, implying that synchro-curvature radiation is an appropriate mechanism to explain the emission from these objects

ECSIC LEEC

Spectral fitting

[Torres 2018, Nat. Astron., 2, 247; Torres et al. 2019, MNRAS, 489, 5494; Íñiguez-Pascual, Viganò & Torres 2022, MNRAS, 516, 2475]

The model can be extended to resemble the X-ray regime too, getting to do it in a majority of the $~10$ high-energy pulsars

MULTIMESSENGER

ASTROPH

Daniel Íñiguez-Pascual - 8

ECSIC IEEC⁹

Geometrical model

• The inclination angle and the meridional extent define the geometry of the emission region

Emission maps and light curves

● We can build emission maps (skymaps), from which light curves are obtained

ECSIC LEEC⁹

Daniel Íñiguez-Pascual - 10

MULTIMESSENGER

ASTROPH

MULTIMESSENGER Light curves statistics [Iniguez-Pascual, Torres & Viganò 2024 **ASTROPHYS** MNRAS, 530, 1550]**@ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC** J2021+4026 $10007 + 7303$ 80 $10633 + 1746$ 0.25 $10633 + 1746$ 0.50 0.40 $10633+1746$ $12229 + 6114$ $10205 + 6449$ 70 0.35 $10218 + 4243$ 0.20 0.40 Percentage of cases 0.30 60 Fequency
Fequency
Co.20)
0.15
또 0.10
또 0.10 $10633 + 1746$ $\sum 0.25$ 10835-4510 $\frac{1}{2}$ 0.20 50 J1513-5908 $E_{0.15}$ 40 1809-2332 0.10 0.10 0.05 30 $J2021 + 3651$ 0.05 0.00 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.00 $0.00 + 0.10 + 0.20 + 0.30 + 0.40 + 0.50 + 0.60 + 0.70 + 0.80$ 20 1.00 1.50 2.00 2.50 3.00 Flux ratio Phase separation Width 10 2PC $10218+4232$ 0.25 $10218+4232$ 0.50 0.40 $10218+4232$ 3PC Ω 0.35 0.20 0.40 3 peaks 1 peak 2 peaks >3 peaks 0.30 **PE 0.30**
Federal
E 0.20 앙
gel
Evento
Le 0.10 Number of peaks \sum 0.25 $\frac{1}{2}$ 0.20 $E_{0.15}$ 1 peak \rightarrow >3 peaks 0.10 100 0.10 0.05 0.05 2 peaks --- Detections $0.00\frac{1}{10}$ 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 3 peaks 80 1.00 1.50 2.00 2.50 3.00 Percentage of cases Flux ratio Phase separation Width \equiv 3PC 0.25 60 0.50 $\overline{}$ 3PC 0.40 $-$ 3PC 0.35 0.20 0.40 0.30 40 Frequency
Frequency
0.20 Co
ge
Evento
E 0.10 ≥ 0.25 $\frac{9}{5}$ 0.20 20 $E 0.15$ 0.10 0.05 0.10 Ω 0.05 0.00 0.00 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 $9°18°$ $27°$ 36° 45 $^\circ$ 54° 63° 72° 81° 90° 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.50 2.00 2.50 3.00 Flux ratio Phase separation Width ψ_{Ω}

ECSIC IEEC⁹

Light curves fitting

Fitting synthetic light curves to observational ones, concurrently to the spectral fitting
 $\frac{1.416633+1746 \psi_0=42.0^{\circ}, \Delta\psi_\mu=10.0^{\circ}, \theta_{obs}=0.0^{\circ}}{1.416}$

ECSIC IEEC⁹

Conclusions

• Our spectral model is able to properly fit the population of high-energy emitting pulsars, showing that synchro-curvature radiation is an appropriate mechanism to explain the emission from these objects

[*Íniguez-Pascual D., Viganò D., Torres D. F., 2022, MNRAS, 516, 2475 (2208.05549)*]

The geometrical model reproduces the variety of observational gamma-ray light curves but still cannot capture all their small scale features [*Íniguez-Pascual D., Torres D. F., Viganò D., 2024, MNRAS, 530, 1550 (2404.01926)*]

Future prospects

- Improve the spectral and geometrical models by including more realistics physics while keeping our effective approach
- Possess a fully working concurrent spectral and light curves fitting

Institute of **Space Sciences**

Back up slide: particle dynamics formulae

The equation of motion of charged particles balances electric acceleration and synchro-curvature losses

$$
\frac{d\vec{p}}{dt} = ZeE_{\parallel}\hat{b} - (P_{sc}/v)\hat{p}
$$
 [Viganò et al. (2014)]

We solve it numerically, considering separately the components parallel and perpendicular to the trajectory

$$
\frac{d(p\cos\alpha)}{dt} = ZeE_{\parallel} - \frac{P_{sc}}{v}\cos\alpha \qquad \qquad \frac{d(p\sin\alpha)}{dt} = -\frac{P_{sc}}{v}\sin\alpha
$$

Local magnetic field strength and curvature radius are parametrize in an effective way: $B = B_{\star} \left(\frac{R_{\star}}{x}\right)^b \qquad r_c = R_{lc} \left(\frac{x}{R_{lc}}\right)^{\eta}$

Back up slide: synchro-curvature formulae

● Single-particle synchro-curvature power spectra:

$$
\frac{dP_{sc}}{dE} = \frac{\sqrt{3}(Ze)^2 \Gamma y}{4\pi \hbar r_{eff}} \left[(1+z)F(y) - (1-z)K_{2/3}(y) \right] \begin{cases} r_{eff} = \frac{r_c}{\cos^2 \alpha} \left(1 + \xi + \frac{r_{gyr}}{r_c} \right)^{-1} \\ z = (Q_{2}r_{eff})^{-2} \\ y = \frac{E}{E_c} \end{cases}
$$
\n**6** Synchro-curvature power:

\n
$$
P_{sc} = \frac{2(Ze)^2 \Gamma^4 c}{3r_c^2} g_r \qquad \begin{cases} Q_2^2 = \frac{\cos^4 \alpha}{r_c^2} \left[1 + 3\xi + \xi^2 + \frac{r_{gyr}}{r_c} \right] \\ E_c = \frac{3}{2}\hbar cQ_2 \Gamma^3 \\ F(y) = \int_y^\infty K_{5/3}(y') dy' \\ \text{Viganò et al. (2014)]} \end{cases}
$$
\n(214)

ECSIC IEEC⁹

Back up slide: synchro-curvature formulae

Convolving the single-particle power spectra with an effective particle distribution,

$$
\frac{dN}{dx} = N_0 \frac{e^{-(x-x_{min})/x_0}}{x_0(1 - e^{-(x_{max} - x_{min})/x_0})}
$$

We obtain the total emission from the region:

$$
\frac{dP_{tot}}{dE} = \int_{x_{min}}^{x_{max}} \frac{dP_{sc}}{dE} \frac{dN}{dx} dx
$$

[Cheng & Zhang (1996), Viganò et al. (2014)]

ECSIC IEEC⁹

Back up slide: particle energy distribution

• Lorentz factors Γ typically range from 10³ to 10⁷.

Back up slide: more spectral fits

Daniel Íñiguez-Pascual - 19

 10^{12}

MULTIMESSENGER ASTROPHYSICS

ECSIC IEEC⁹

Back up slide: more spectral fits

ECSIC IEEC⁹

Back up slide: geometrical model

● Frenet-Serret equations allow to geometrically describe a curved trajectory with torsion

$$
\frac{df}{d\lambda} = \frac{1}{r_c}\hat{n},
$$

$$
\frac{d\hat{n}}{d\lambda} = -\frac{1}{r_c}\hat{t} + \tau\hat{b},
$$

$$
\frac{d\hat{b}}{d\lambda} = -\tau\hat{n}.
$$

● The emission region is build around a centered value of the magnetic colatitude:

$$
\Psi_{\mu}^{c}(\xi_{\mu}, R, \Psi_{\Omega}) = \frac{\pi}{2} + A(R, \Psi_{\Omega}) \sin(\xi_{\mu} - \pi/2)
$$

with

$$
A(R, \psi_{\Omega}) = K \Psi_{\Omega} (R/R_{\rm lc} - R^0/R_{\rm lc})^2
$$

Back up slide: geometrical model

ECSIC IEEC⁹

Back up slide: light curve fits

ECSIC LEEC⁹

Daniel Íñiguez-Pascual - 23

MULTIMESSENGER ASTROPHYSICS