Probing Circumgalactic Cosmic Rays around the Milky Way via GeV-PeV gamma rays and neutrinos

Susumu Inoue (Chiba U) Naomi Tsuji (Kanagawa U) Tsunefumi Mizuno (Hiroshima U) Kazumasa Kawata (ICR R) Yutaka Ohira (U Tokyo) Masahiro Nagashima (Bunkyo U)

Papers in prep.

CGM=circumgalactic medium Faucher-Giguère & Oh 23

Probing Circumgalactic Cosmic Rays around the Milky Way via GeV-PeV gamma rays and neutrinos

Susumu Inoue (Chiba U) Naomi Tsuji (Kanagawa U) Tsunefumi Mizuno (Hiroshima U) Kazumasa Kawata (ICRR) Yutaka Ohira (U Tokyo) Masahiro Nagashima (Bunkyo U)

Papers in prep.

CGM=circumgalactic medium Faucher-Giguère & Oh 23

Probing Circumgalactic Cosmic Rays around the Milky Way via GeV-PeV gamma rays and neutrinos

Susumu Inoue (Chiba U) Naomi Tsuji (Kanagawa U Tsunefumi Mizuno (Hiroshima U) Kazumasa Kawata (ICRR Yutaka Ohira (U Tokyo) Masahiro Nagashima (Bunkyo U)

Papers in prep.

CGM=circumgalactic medium Faucher-Giguère & Oh 23

cool CGM in Milky Way only component with reliable distances intermediate velocity clouds (IVCs): $|v_{dev}| \sim 40-90$ km/s, D~1-2 kpc, Z~Z_{\odot}

PeV γ rays: unique probe of Milky Way halo CRs

PeV γ rays: unique probe of Milky Way halo CRs

 $\lambda_{\gamma\gamma} \sim$ 400 kpc @0.2 PeV 70 kpc @0.3 PeV 30 kpc @0.4 PeV 10 kpc @0.8 PeV 7 kpc @2-3 PeV $PeV=10^{15} eV$ unlike GeV-TeV: - extragalactic compt. filtered by yy with EBL/CMB - E_{γ} -dependent $\gamma\gamma$ mfp covers halo D scales -> unique constraints on origin

PeV γ rays: unique probe of Milky Way halo CRs

 $\lambda_{\gamma\gamma} \sim$ 400 kpc @0.2 PeV 70 kpc @0.3 PeV 30 kpc @0.4 PeV 10 kpc @0.8 PeV 7 kpc @2-3 PeV $PeV=10^{15} eV$ unlike GeV-TeV: - extragalactic compt. filtered by yy with EBL/CMB - E_{γ} -dependent $\gamma\gamma$ mfp covers halo D scales -> unique constraints on origin Nice for probing circumgalactic CRs!

Tibet ASy events sky map

398 < E(TeV) < 1000

from Tibet press release

Tibet high b events: consistent w. CR background, but also with real γ rays

IVCs: probing GeV-PeV CRs at disk-halo interface

IVCs: probing GeV-PeV CRs at disk-halo interface

IVCs: probing GeV-PeV CRs at disk-halo interface

probing GeV-PeV CRs at z~1-2 kpc: implications

- Unlike phenomenological models of CR propagation (e.g. GALPROP), theoretically motivated models predict different modes at ~GeV (self-confinement) and ~PeV (extrinsic turbulence)
- Between z~0 and z~1-2 kpc, potentially significant differences due to different wave damping processes in cool and warm/hot phases

probing GeV-PeV CRs at z~1-2 kpc: implications

- Unlike phenomenological models of CR propagation (e.g. GALPROP), theoretically motivated models predict different modes at ~GeV (self-confinement) and ~PeV (extrinsic turbulence)
- Between z~0 and z~1-2 kpc, potentially significant differences due to different wave damping processes in cool and warm/hot phases
- Some simulations predict significant spectral hardening at z~few kpc

probing GeV-PeV CRs at z~1-2 kpc: implications

- Unlike phenomenological models of CR propagation (e.g. GALPROP), theoretically motivated models predict different modes at ~GeV (self-confinement) and ~PeV (extrinsic turbulence)
- Between z~0 and z~1-2 kpc, potentially significant differences due to different wave damping processes in cool and warm/hot phases
- Some simulations predict significant spectral hardening at z~few kpc
- Relevant IVCs consistent with Galactic fountain outflows Marasco+ 22 -> launching site of Galaxy-wide (CR-driven) winds?
 - -> transient CR enhancement via buoyant bubbles? Recchia+ 21

- No statistically significant correlations Tibet events vs HVCs ($z\sim2-8$ kpc) -> $u_{CR,HVC}/u_{CR,local}(4-10 \text{ PeV})\sim<250 (f_{tot/HI}/4)^{-1}$ constrains non-standard scenarios Fujita+ 17, Merten+ 18, Recchia+ p_2

neutrinos: probing CRs in the outer halo

summary: Probing MW CGCRs with GeV-PeV γ,ν

- CRs in CGM potentially crucial for evolution of Milky Way but many unknowns. Observational probe needed. γ-rays from halo likely patchy, possibly correlated with cool gas.
- PeV γ -rays advantangeous over GeV-TeV because: Extragalactic γ shielded. E-dependent $\gamma\gamma$ horizon covers interesting halo scales. CR elec. bkgd suppressed by cooling.
- Tibet high b events vs IVC/HVC correlation search: Not significant so far -> Limits on CRs escaping from disk, CRs in inner halo. Study with LHAASO under way. Potential new insight into CR propagation, (CR-driven)winds.
- For CRs in outer halo, neutrinos offer meaningful constraints. Future constraints via PeV γ from South (ALPACA, SWGO).
- Challenging for IACTs, but potentially crucial additional info.