

The Galactic Center as seen by SWGO

2024 8th Heidelberg International Symposium on High Energy Gamma Ray Astronomy Milano, 2-6 September 2024

Helena Ren on behalf of the SWGO Collaboration

2th September, 2024

- Introduction to the Galactic Centre
- SWGO: the future VHE and UHE observatory
- Galactic Centre Model
- o Dark Matter Sensitivity
- Conclusions

Introduction

Central Molecular

Zone (CMZ)

- The Galactic Centre (GC) is one of the most interesting and complex regions in our own Galaxy.
- Candidate PeVatron (H.E.S.S. Coll. 2016).
- Central ~200 pc of the Galaxy

Southern Wide-field Gamma-ray Observatory

 \rightarrow SEE FRIDAY PLENARY TALK by ULISSES BARRES DE ALMEIDA

Why in the South?

- The Southern sky at this energy range is missing.
- GC is at the edge of current instruments (high zenith angles) like HAWC and LHAASO.

Southern Wide-field Gamma-ray Observatory

 \rightarrow SEE FRIDAY PLENARY TALK by ULISSES BARRES DE ALMEIDA

Why in the South?

- The Southern sky at this energy range is missing.
- GC is at the edge of current instruments (high zenith angles) like HAWC and LHAASO.

Southern Wide-field Gamma-ray Observatory

 \rightarrow SEE FRIDAY PLENARY TALK by ULISSES BARRES DE ALMEIDA

Why in the South?

- The Southern sky at this energy range is missing.
- GC is at the edge of current instruments (high zenith angles) like HAWC and LHAASO.

Credit: Richard White, MPIK

Candidate Array Configurations

The Southern Wide-field Gamma-ray Observatory

Simulations in the Design Phase

Simulations of gamma-ray sources for the different array and detector designs help us to identify the best configuration.

- 1. GC sensitivity (simulated observation time: 1 year)
- 2. Dark matter sensitivity (simulated observation time: 5 year)

Sware Control of the Southern Wide-field Gamma-ray Observatory

Simulating the GC region

- Latest Instrument response functions (IRFs)
- Map region: $10^{\circ} \times 10^{\circ}$ centered on the GC.
- Spatial and spectral model: <u>CTA GPS models</u> (publicly available)
- 1 year of observation time

The Galactic Center as seen by SWGO - Helena Ren

DM sensitivity (5 years)

SWGO benchmarks

	Science Case	Benchmark Description
1	Transient Sources:	Minimum flux (>100 GeV) for 5σ de-
	Gamma-ray Bursts	tection using a PWL index = -2., F(t)
		$\propto t^{-1.2}$ two redshift values (z = 0.3, z =
		0.8)
1	Galactic Accelerators:	Detection significance > 100 TeV in 5
	PeVatron Sources	yr, ensuring 5 σ cutoff detection, for:
~		ECPL Index = -2.0, Cutoff = 200 TeV
1	Galactic Accelerators:	Maximum source angular extension de-
	PWNe and TeV Halos	tectable at 5σ in 5-yr integration for:
		$F(>1TeV) = 5 \times 10^{-13} \text{ TeV/cm}^{-2}.\text{s}$
1	Galactic Accelerators:	Minimum angular separation detectable
	Source Confusion	between two sources at 5σ level in 5-yr
		integration at low energies (3 TeV) and
		high energies (50 TeV.)
	Diffuse Emission:	Achievable background rejection power
	Fermi Bubbles	at 10 TeV whilst keeping 80% of
		gamma-rays that remain after quality
		cuts.
	Fundamental Physics:	100 TeV bb thermal-relic cross-section
	Dark Matter from Galactic Halo	limit at 95% CL in 5-years, for Einasto
		profile.
	Cosmic-rays:	Log-mass species reconstruction accur-
	Mass-resolved dipole/multipole	acy for A={1, 4, 14, 56}; Maximum di-
	anisotropy	pole energy at 10 ⁻³ level; Maximum
		multipole scale > 0.1 PeV

Dark Matter self-annihilation in the GC region

- Weakly interacting massive particles (WIMP) are promising candidates of DM.
 - → Can eventually self-annihilate or decay and produce gamma-rays → indirect detection.

Dark Matter self-annihilation in the GC region

- Weakly interacting massive particles (WIMP) are promising candidates of DM.
 - → Can eventually self-annihilate or decay and produce gamma-rays → indirect detection.
- GC region is a prominent regions of DM detection.
 - Increase of DM density toward the center (Einasto, NFW profiles)
 - So far, DM analysis only masking the Galactic Plane (A. Viana, et al. 2019; A. Acharyya, et al. 2020)
 - Include the plane and GC in our analysis.

The Galactic Center as seen by SWGO - Helena Ren

Sweet Cross section: compare arrays & detectors

The Galactic Center as seen by SWGO - Helena Ren

- Simulation of gamma-ray sources and estimate the expected significance, spectrum and sensitivity for different configurations during the design phase of SWGO is crucial.
- Result for the latest version IRFs:
 - → Spectrum of GC components can be expanded to hundreds of TeV.
 - The array layout 4 and detector design D seems to be the best candidate when exploring the DM sensitivity.

Back-ups

Simulation

Significance map, correlation radius 0.2 deg.

PRELIMINARY

Simulation

Significance over time

2nd simulation - DM sensitivity

• Settings:

- → Longer observation time needed \rightarrow 5 years.
- → 2 profiles: Einasto and NFW.
- ightarrow 2 DM self-annihilation channels: $bar{b}$, $au^+ au^-$
- → DM mass considered: 100 GeV to 100 TeV.
- → Statistical study: 300 simulations for each configuration and model.
- → Keep the 95% C.L. for each simulation \rightarrow Get the average value.

Einasto bb

Einasto bb, all

Einasto tau, all

NFW bb, all

NFW tau, all

