

Imprint of "local opacity" effect on γ-ray spectrum of blazar jets

Constraining the sight of gamma-ray emission

Sushmita Agarwal

Amit Shukla, Karl Mannheim, Bhargav Vaidya, Biswajit Banerjee

Gamma 2024

Università di Milano "La Statale" 03 Sept 2024

Blazars

- 1. Flat Spectrum Radio Quasar [FSRQ] Strong optical emission lines
- 2. Bl Lac Weak or no optical lines

3C 273

Rapid Variability in Blazar

Blazars show variability less than size of Black hole \rightarrow Small γ -ray emission region

Observed Fast	
variability in GeV/TeV	
bands	

Small	er	nission
zone	in	Blazar
jet		

PKS 1424-418 (z=1.522) Absorption signature at E = 40 – 95 GeV

Fig: (a) Fermi-LAT LC of PKS 1424-418 for 16 years of Fermi era (MJD 54683-60024). (b) The combined spectrum for all photons in high state (grey patches (a)) and low state (white patches in (a)). (c) Residual for each energy bin

Exploring the Origins of absorption feature

1. EBL absorption

Gamma ray photons are optical thin to EBL upto

$$E_{crit} = 170 (1 + z)^{-2.38} GeV = 18.8 GeV$$

2. BLR absorption

Ly α influence spectrum beyond **10 GeV**.

EBL absorption ---- Intrinsic spectrum -- Low state Observed spectrum -- low state Intrinsic spectrum -- High state Observed spectrum -- high state 10^{-1} $10^{-11} \chi_{red}^2 = 1.02 \pm 0.01$ $\chi^2_{red} = 1.09 \pm 0.04$ $\chi^2_{red} = 1.18 \pm 0.05$ $\chi^2_{red} = 1.04 \pm 0.01$ $\chi^2_{red} = 1.25 \pm 0.06$ Low state 1. $\chi^2_{red} = 7.15 \pm 1.14$ $\chi^2_{red} = 8.64 \pm 1.2$ $\chi^2_{red} = 11.24 \pm 1.23$ $\chi^2_{red} = 4.51 \pm 0.75$ $\chi^2_{rod} = 4.74 \pm 0.81$ **EBL Models FIT well!** 10⁻¹² Kneiske+ 2004 -- best fit Gilmore 2012 -- Fiducial Kneiske and Dole 2010 主 Finke+ 2010 Frankenschini+ 2008 2. High state \sim 10^{-10} Extra absorption CG feature beyond 10 GeV in D $10^{-11} \chi^2_{red} = 1.3 \pm 0.06$ $\chi^2_{red} = 1.19 \pm 0.05$ $\chi^2_{red} = 1.21 \pm 0.05$ $\chi^2_{red} = 1.25 \pm 0.05$ $= 1.03 \pm 0.01$ addition to EBL model $\chi^2_{red} = 9.4 \pm 1.23$ E²dN/dE $\chi^2_{red} = 11.87 \pm 1.22$ $\chi^2_{red} = 10.0 \pm 1.24$ $\chi^2_{red} = 10.26 \pm 1.23$ $4 = 4.43 \pm 0.73$ 10⁻¹² Dominguez+ 2011 Gilmore 2012 -- fixed Gilmore 2012 Helgason and Kashlinsky 2012 主 Inoue 2013 10^{-10} $10^{-11} \chi^2_{red} = 1.34 \pm 0.12$ $\chi^2_{red} = 2.33 \pm 0.34$ $\chi^2_{red} = 1.09 \pm 0.03$ $\chi^2_{red} = 4.16 \pm 0.4$ Fig: EBL absorption on intrinsic $\chi^2_{red} = 4.7 \pm 0.41$ $\chi^2_{red} = 6.45 \pm 0.92$ $\chi^2_{red} = 13.72 \pm 1.41$ $\chi^2_{red} = 3.61 \pm 0.23$ $\chi^2_{rod} = 7.14 \pm 1.14$ $\chi^2_{red} = 15.61 \pm 1.42$ spectrum extrapolated upto 100 GeV and compared with observed 10⁻¹² Scully et al 2014 -- high Opac ± Scully et al 2014 -- Low Opacity Kneiske+ 2004 -- high UV Stecker 2006 -- baseline Stecker 2006 -- fast evo spectrum for 15 EBL models Energy [GeV] 10^{-1} 10^{0} 10^{1} 1040^{-1} 10^{0} 10^{1} 10^{-1} 1040-1 10^{0} 10^{1} 10^{-1} 10^{0} 10^{1} 10^{2}

Exploring the Origins of absorption feature

M87 emitting a relativistic jet [Credits: Nasa]

PKS 1424-418 (z=1.522) Observational constraints

 $t_{var} = 0.15 \pm 0.06$ day

17

PKS 1424-418 (z=1.522) Observational constraints

- BLR is optical thick to photons E > 10 GeV
- Torus is optical thick to photons with E> 345 GeV

Several photons with E > 15 GeV detected

Highest energy photon = 65 GeV

Other possible origin

Fast variability

- **Observed variability:** 0.15 days
- **Dissipation distance >** 0.025 pc
- **Observed highest energy photon** = 65 GeV
- Location of emission zone at R > 0.45 pc

Accretion disk Influence BLR Influence

For Pair production: s < 1

$$E_{th} = \frac{2 \,(\,\mathrm{m_e}\,\mathrm{c}^2\,)^2}{\varepsilon_{\mathrm{soft}}(1+\mathrm{z})(1-\cos\,\theta)}$$

Other possible origin

Fast variability

- **Observed variability:** 0.15 days
- **Dissipation distance** > 0.025 pc
- Observed highest energy photon = 65 GeV
- Location of emission zone at **R > 0.45 pc Edge of BLR**

Accretion disk Influence BLR Influence

Contribution from accretion disk?

More chances of tail on collision from accretion disk photon.

Pair absorption extremely unlikely

Other possible origin

Fast variability

- **Observed variability:** 0.15 days
- **Dissipation distance >** 0.025 pc
- **Observed highest energy photon** = 65 GeV
- Location of emission zone at R > 0.45 pc
 Edge of BLR

BLR Influence

Contribution from BLR?

- 1. The blob lies towards the edge of BLR
- 2. Low ionized molecular clouds reside at the edge of BLR
- 3. Absorption from 40 70 GeV could be from low ionization $H\alpha$ or $H\beta$ at outer edge of BLR.
- **4.** Absoprtion from 10 30 GeV could be from low ionization hydrogen Lyα or Ly continumm.

Possible contribution from outer edge of BLR

- Emission region located at the edge of BLR as also observed by Stern and Poutanen 2014.
- The observed absorption at E > 10 GeV possibly because of low ionization lines located at the edge of BLR.
- Prominent absorption feature present specifically during the high state of the source in contrast to its absence in low flux states
- Powerful dissipation events within or at the edge of the BLR evolve into fainter gamma-ray emitting zones outside the BLR.
- Similar flux resolved searches with improved photon statistics needed for other high mass Black hole FSRQs.

Thank you!!

This work

Other work

Sushmita Agarwal

Indian Institute of Technology, Indore, India

sush.agarwal16@gmail.com

Backup

BLR cutoff + EBL absorption

$$\frac{dN}{dE} = EBL \ absorbed \ spectrum \ * \ exp\left(- \left(\frac{E}{E_o}\right)^{\beta_c}\right)$$

$$E_o = 43 \text{ GeV}$$
$$\beta_c = 6.9$$

PKS 1424-418 FSRQ | z=1.522 | $M_{BH} = 4.5 \times 10^9 M_{\odot}$

- FSRQ are the most luminous blazars
- Mostly constrained at high redshift.
- Linear relation between Black hole mass (M_{BH}) and disk luminosity (L_d) .
- Disk luminosity is reprocessed into BLR luminosity hence, luminous disk means luminous BLR.
- Emission within luminous BLR should result in **cutoff in high energy spectrum**.

Redshift

Kerby & Falcone 2023

Active galactic nuclie & Blazars

- 1. Active galactic nuclie have a luminous core. Emission from core dominate the emission from galaxy.
- 2. Blazars Specifically aligned AGNs with jet pointing towards observer.

- Variability estimate of size of emission: Detection of fast variability constrains emission region within BLR (in Bl lacerate, 3C 279, PKS 1222+216, CTA 102, PKS 2155–304) [Agarwal et al 2023, Shukla et al 2020, Nalewajko et al 2012, Hayashida et al. 2012]
- Detection of TeV photons along with fast variability requires emission region outside BLR to escape photonphoton absorption [Ton 599, PKS 1222+216, 3C279, PKS 1510-089, PKS 1441+25 +] [VERITAS collaboration 2011]
- However, Large Compton dominance in FSRQ necessitates proximity to region of seed photons.
- Origin of gamma-rays in Fermi blazars found beyond Broad line region [106 Blazars] [Costamante et al 2018]

Result

Possible contribution from outer edge of BLR

- Emission region located at the edge of BLR as also observed by Stern and Poutanen 2014
- The observed absorption at E > 10 GeV possibly because of low ionization lines located at the edge of BLR.
- The presence of emission region towards the edge provides ample amount of H_{α} and H_{β} lines which have energy threshold of 40 60 GeV.
- High ionization lines, forming smaller angles at large distance have very little contribution to observed absorption in contrast to the low ionization lines.
- Powerful dissipation events within or at the edge of the BLR evolve into fainter gamma-ray emitting zones outside the BLR.
- Similar flux resolved searches with improved photon statistics needed for other high mass Black hole object.

Thank you!!

This work

Other work

Sushmita Agarwal

Indian Institute of Technology, Indore, India

sush.agarwal16@gmail.com

32

Active galactic nuclie & Blazars

- 1. Active galactic nuclie have a luminous core. Emission from core dominate the emission from galaxy.
- 2. Blazars Specifically aligned AGNs with jet pointing towards observer.

