

## Transient gamma rays from the 2021 outburst of RS Ophiuchi

with Enrico Peretti. Pierre Cristofari. Vincent Tatischeff and Andrea Ciardi



#### Vo Hong Minh Phan **Observatoire de Paris and Sorbonne University**

### **Motivation**



 $s^{-1}$ ]

Giuffrida (with **Phan**) et al. A&A 2024, see also **Phan** et al. A&A 2020 (for SNR W28)





### Motivation



Phan et al. Phys. Rev. Lett. 2021, Phan & Cristofari in preparation







Not to scale



#### • White dwarf embedded in red giant wind.





Not to scale



- White dwarf embedded in red giant wind.
- Distance to Earth  $\sim 1.5 \, \text{kpc}$  or  $2.5 \, \text{kpc}$  ?
- Size of the system  $\sim 1.5$  au.
- B-field close to red giant  $\sim 1 \, \text{G}$  to  $10 \, \text{G}$ .
- Gas density close to red giant  $\sim 10^8 \,\mathrm{cm}^{-3}$ .





Not to scale



- White dwarf embedded in red giant wind.
- Distance to Earth  $\sim 1.5 \, \text{kpc}$  or  $2.5 \, \text{kpc}$  ?
- Size of the system  $\sim 1.5$  au.
- B-field close to red giant  $\sim 1 \, \text{G}$  to  $10 \, \text{G}$ .
- Gas density close to red giant  $\sim 10^8 \,\mathrm{cm}^{-3}$ .
- Explode every 10 or 15 years.





Not to scale



- White dwarf embedded in red giant wind.
- Distance to Earth  $\sim 1.5 \, \text{kpc}$  or  $2.5 \, \text{kpc}$  ?
- Size of the system  $\sim 1.5$  au.
- B-field close to red giant  $\sim 1 \, \text{G}$  to  $10 \, \text{G}$ .
- Gas density close to red giant  $\sim 10^8 \,\mathrm{cm}^{-3}$ .
- Explode every 10 or 15 years.



### **Optical light curve**



Not to scale, optical flux derived from Cheung et al. ApJ 2022



 $t = 0 \, day$  at 2021 August 8.25 in Coordinated Universal Time





### Shock dynamics



Not to scale, shock speed from Cheung et al. ApJ 2022 and Pandey et al. MNRAS 2022





### Shock dynamics



Not to scale, shock speed from Cheung et al. ApJ 2022 and Pandey et al. MNRAS 2022





### Gamma-ray light curves



Not to scale, optical and gamma-ray flux from Cheung et al. ApJ 2022 and HESS Collaboration Science 2022



11









# $\frac{\partial N(E,t)}{\partial t} = \pi R_{\rm sh}^2(t) v_{\rm sh}(t) f_{\rm p}(E,t),$







#### Shock dynamics

































HESS Collaboration Science 2022, Zheng et al. Phys. Rev. D 2022, Diesing et al. ApJ 2023, De Sarkar et al. ApJ 2023



- Changes in injection spectrum,
- Multiple shocks,
- Leptonic gamma rays,
- ... ?



### Gamma-ray absorption





### Gamma-ray absorption







### Gamma-ray absorption



Phan & Peretti et al. in preparartion

• Gamma-ray flux with absorption

$$\phi(E_{\gamma},t) \simeq \frac{\phi_0(E_{\gamma},t)}{2} \left( e^{-\tau_1(E_{\gamma},t)} + e^{-\tau_2(E_{\gamma},t)} \right).$$

#### Opacities from the two sides

$$\tau_1(E_{\gamma}, t) = \int_{R_{\rm sh}(t)}^{d_s} \mathrm{d}r \int_0^\infty \mathrm{d}E_{\rm ph} f_{\rm opt}(E_{\rm ph}, r, t) \sigma_{\gamma\gamma}(E_{\gamma}, E_{\rm ph}),$$
  
$$\tau_2(E_{\gamma}, t) = \tau_1(E_{\gamma}, t) + 2 \int_0^{R_{\rm sh}(t)} \mathrm{d}r \int_0^\infty \mathrm{d}E_{\rm ph} f_{\rm opt}(E_{\rm ph}, r, t) \sigma_{\gamma\gamma}(E_{\gamma}, E_{\rm ph}),$$



### **Preliminary results**



Phan & Peretti et al. in preparartion

### **Preliminary results**



Phan & Peretti et al. in preparartion



### Conclusion and outlook



Phan & Peretti et al. in preparartion

- Novae are ideal labs for particle acceleration.
- High-energy gamma rays from novae can be partially absorbed by optical photons in the first few days of the explosions.
- This can lead to a delay between GeV and TeV light curves.
- These models maybe tested with neutrino telescopes in the future?

