Particle Acceleration by Magnetic Reconnection & production of gamma-rays in Relativistic Jets and Accretion disks

02

0.4

X Axis

-0.2

-0.4

ElisaBete de Gouveia Dal Pino *IAG - Universidade de São Paulo*

-0.2

0.2

0.4

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

-0.4

Y Axis

0.2

0.1

-0.4

-0.4

Collaborators: U. Barres de Almeida, M.V. del Valle, L. Kadowaki G. Kowal, A. Lazarian T. Medina-Torrejon Y. Mizuno, J.C. Ramirez-Rodriguez J. Stone, G. Vicentin

Gamma-Ray 2024 Workshop, Milan, September 3rd, 2024

Turbulence drives Fast Reconnection in 3D MHD flows

(Vicentin, Kowal, de Gouveia Dal Pino & Lazarian, ApJ 2024)

Two Parallel Worlds: Kinetic and MHD Reconnection Acceleration

Kinetic (PIC)

- Probes kinetic scales ~ 100-1000 c/ ω_p (microscopic: $10^{-10} - 10^{-17}$ orders smaller than real systems)
- Fast reconnection driven by tearing mode instability (plasmoids): 2D
- Particle acceleration up to ~1000 mc²
- Dominant electric field: resistivive ηJ
- 3D: Fermi acceleration and/or drift? no consensus
- **3D:** Power law spectrum due to **drift** acceleration ?

(e.g. Comisso & Sironi 2019; Zhang et al 2021, 2023; Sironi 2022; Chernoglazov et al 2023; Gou et al. 2019; 2023)

Solves injection energy problem: initial acceleration of CRs -> caution needed to extrapolate to large scales

MHD

- Probes macroscopic astrophysical scales
- Fast reconnection driven by turbulence (3D) (K-H; MRI, Kink CDKI, tearing, etc)
- Particle acceleration up to ~**10¹⁰ mc²**
- Dominant electric field: non-resistive –vxB
- Fermi acceleration dominates until Larmor radius > thickness of largest reconnection layers ~ injection scale of turbulence
- drift acceleration beyond that
- Power law spectrum determined by Fermi and drift acceleration

(Kowal, deGDP & Lazarian 2011; 2012; de Gouveia Dal Pino & Kowal 2015; del Valle et al. 2016; Kadowaki et al 2021; Medina-Torrejon et al 2021, 2023)

Solves saturation energy of CRs: final acceleration

High Resolution Reconnection Acceleration in 3D Resistive MHD Current Sheets with test particles

High Resolution Reconnection Acceleration in 3D Resistive MHD Current Sheets with test particles

Magnetic Reconnection Particle Acceleration from 3D-MHD Simulations of Relativistic Jets

Medina-Torrejon, de Gouveia Dal Pino, Kowal, ApJ 2023

Medina-Torrejon, dGDP+ ApJ 2022

Applications to Blazar VHE Phenomena

(Aartsen et al. Science 2018)

- ✓ Jet at the transition from magnetically dominated to kinetically dominated: particle acceleration controlled by reconnection
- ✓ Jet background described by **striped reconnection** model (Giannios & Uzdenzky 2019)
- ✓ Photon Field: due to internal dissipation -> Synchrotron photons

de Gouveia Dal Pino, Rodriguez-Ramirez+ (2024, in prep.)

Fermi reconnection acceleration:

$$t_{acc} \sim \frac{4\Delta}{cd_{ur}} \qquad d_{ur} \approx \frac{2\beta_{rec}(3\beta_{rec}^2 + 3\beta_{rec} + 1)}{3(\beta_{rec} + 0.5)(1 - \beta_{rec}^2)}$$

Xu & Lazarian 2023; de Gouveia Dal Pinno & Medina-Torrejon 2024

 $\Delta t = 0.44$ yr.

de Gouveia Dal Pino, Rodriguez-Ramirez+ 2024 (in prep.)

Fermi reconnection acceleration:

$$t_{acc} \sim \frac{4\Delta}{cd_{ur}} \qquad d_{ur} \approx \frac{2\beta_{rec}(3\beta_{rec}^2 + 3\beta_{rec} + 1)}{3(\beta_{rec} + 0.5)(1 - \beta_{rec}^2)}$$

Xu & Lazarian 2023; de Gouveia Dal Pinno & Medina-Torrejon 2024

Model produces:

- neutrinos and VHE (photo-pion)
- observed time delay between VHE γ -rays appearing later than neutrino $\Delta t = 0.44$ yr.

de Gouveia Dal Pino, Rodriguez-Ramirez+ 2024 (in prep.)

TeV Spectral Spike of Mrk 501 explained by Reconnection Acceleration

Blazar Mrk 501: TeV spikes during X-ray high state

(Magic Coll. 2020)

- ✓ Jet at the transition from magnetically dominated to kinetically dominated: particle acceleration by reconnection
- ✓ Same jet background model: striped reconnection (Giannios & Uzdenzky 2019)
- ✓ Two-zone model (electron Syn & SSC):
 - base quiescent emission
 - transient emission (inner magnetized region)

TeV Spectral Spike of Mrk 501 explained by Reconnection Acceleration

Blazar Mrk 501

TeV spikes: explained by a leptonic transient emission in a compact zone, located in a more magnetized and slower flow compared to the region that produced quiescent SED component.

Rodriguez-Ramirez, Barres de Almeida, de Gouveia Dal Pino, Das-Cortes, Paiva (2024, in prep.)

Applications to accretion disk VHE Phenomena

CR Reconnection Acceleration in the accretion flow of BHs

de Gouveia Dal Pino & Lazarian, A&A 2005 de Gouveia Dal Pino, Piovezan, Kadowaki A&A 2010 Kadowaki, de Gouveia Dal Pino & Singh, ApJ 2015 Singh, de Gouveia Dal Pino & Kadowaki, ApJ 2015

GRMHD simulations of accretion flows around BHs reconnection driven by magneto-rotational turbulence

(de Gouveia Dal Pino et al. 2020; Kadowaki et al. 2018; Vincentin+ in pr.)

Galactic Center SgrA*: Reconnection acceleration driven by turbulent accretion flow

Rodriguez-Ramirez, de Gouveia Dal Pino, Alves-Batista, ApJ 2019

Galactic Center SgrA*: Reconnection acceleration driven by turbulent accretion flow

Rodriguez-Ramirez, de Gouveia Dal Pino, Alves-Batista, ApJ 2019

Noutrinos and Gamma Rays from NGC1068

The absence of γ rays indicates auto-absorption due to a dense photon field

. The emission may

come from the core of the AGN (reconnecrtion acceleration?)

Noutrinos and Gamma Rays from NGC1068

The absence of γ rays indicates auto-absorption due to a dense photon field

luction

. The emission may

come from the core of the AGN (reconnecrtion acceleration?)

Summary

- 3D MHD simulations of particle acceleration driven by turbulent reconnection align with theory predictions: dominance of Fermi over drift process up to large saturation energy, in contrast to recent 3D PIC predictions (Sironi 2022; Zhang, Giannios & Sironi 2023)
- Particle energy grows ~ exponentially in time during Fermi: t_{acc} ~ independent of E, in contrast to drift: t_{acc} ~ E (very inefficient to accelerate at large energies)
- Magnetic reconnection particle acceleration model applied to blazar TXS 0506+056 explains VHE and neutrino emission and observed time delay
- Magnetic reconnection particle acceleration model applied to blazar Mrk 501 explains **TeV spikes as due to** transient leptonic emission (located in a more magnetized and slower region than the one that produces the quiescent component of the SED)
- Reconnection acceleration in turbulent accretion flows around BHs may also explain VHE phenomena (e.g. SgrA*, and maybe NG1068 ?....)

EXTRA SLIDES

Reconnection in 3D MHD flows: due to Turbulence

Turbulent flows violate flux freezing (Lazarian & Vishniac 1999):

origin of magnetic field back tracked in time and instead of a single line at earlier time, there are several progenitor lines (lines suffer Richardson diffusion)

(Eyink et al., Nature 2013)

Plasma does not stay in same magnetic field line, but diffuses -> enabling reconnection diffusion

$n_{RD} \sim I v_I \min(1, M_A^3)$

(Lazarian 2005; Santos-Lima et al. 2010; Lazarian et al. 2012; 2012; 2021; Koshikumo et al. 2024)

Turbulence drives Fast Reconnection in 3D MHD flows

(Lazarian & Vishniac 1999; Eyink et al. 2011; 2013; Lazarian et al. 2020)

Particles are accelerated in reconnection sites mainly by Fermi process

Reconnection Acceleration

Exponential energy growth in time

1st-order Fermi

de Gouveia Dal Pino & Lazarian, A&A 2005; del Valle, de Gouveia Dal Pino, Kowal, MNRAS 2016

$$<\Delta E/E > ~ v_{rec}/c$$

$$\frac{d}{dt}(\gamma m \mathbf{u}) = q(\varepsilon + \mathbf{u} \times \mathbf{B}) \quad \varepsilon = -\mathbf{v} \times \mathbf{B}$$

 $\boldsymbol{\varepsilon} = \eta \boldsymbol{J}$ negligible

Particles are accelerated in reconnection sites also by Grad-B drift

1st-orderFermi:particlesbounce back and forth between 2convergingmagneticflows:shrinking loop:increasespll

(de Gouveia Dal Pino & Lazarian, A&A 2005)

Drift: at larger Larmor radius particle interacts with converging magnetic flow and gain energy during every gyration: increases **p**_⊥

(Kowal, deGDP, Lazarian, PRL 2012; Lazarian et al. 2012)

3D MHD X 3D PIC Reconnection Acceleration in *PURE* Turbulence: similar results different interpretation

