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Flare recognition

« With a clustering method applied to gamma-ray collected within a
suitable region around the source, we searched for gamma-ray
flares of FSRQs in the energy range 0.1-300 GeV.

« data set: {X(i)} (gamma-ray events collected within an extraction
region)
where X IS the cumulative exposure (from the start of obs) of the
collected event 1.

 clustering law:
X Xay <K*Ay (K<Nyg)
1 € [1,1+k]
« chance cluster probabillity is evaluated with a scan-statistic related

method ( maximum score scan statistic, Glaz 2006, conf. level
set to 1*10-3).



ISRS sensitivity

Sensitivity depends on average source flux within the obs period:
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Lines: computed sensitivity assuming constant exposure (no gaps)

Squares and triangles: sensitivity evaluated for simulations and
adopting FERMI-LAT real exposures to the sources.

Triangles: 50% of simulated flares are recognized,;

Squares: 20% of simulated flares are recognized.
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Sample selection

e FSRQs from the 3FGL catalog with TS > 49

e Only sources at least 15° above the galactic plane are chosen

o Peak fluxes evaluated with photometry are compared with the full
likelihood analysis, and eventually the photometric flare is validated
(TS flare > 9, Ratio of photomeric to likelihood based flare flux < 1.3)

o NO other selections applied (e.g., Sun constrain)

e Comparison with simulations of time series taking into account of
exposure variation with time

e €sSposure for each source evaluated with time bins of 1/1000 of a day

e 049 (713) flares from 147 (115) sources for E > 300 MeV (E> 100 MeV)



Waiting time distribution (all flares)
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Short Waiting times and Fermi-LAT ToO

Apart from S4 0218+35, FERMI-LAT performed 5 ToO Campaigns on FSRQs
during bright flares, and during 3 of theese campaigns we found the large majority
of short waiting times:
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Fit for single sources
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Radio data @ 43 GHz (Jorstad 2017)
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Comparison with Radio data
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Flaring Luminosity
Vs
flare temporal
FWHM

work in progress
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Flare Luminosity and duration
distributions (300 MeV sample)
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Correlation between luminosity
and flare duration
(PRELIMINARY)
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Fit taking into account for the
exposure variation with time and
simulating flares
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recollimation shock scenario

 |If gamma-ray flares are produced while the
traveling knots cross |et stationary features
(recollimation shock scenario, Casadio2015,
Casadio2019), from the burst period, knot size

along the jet should be ~2pc (knot reference
frame).



Turbulence in the jet

electron acceleration Is
caused by standing v aowm st axs
conical recollimation
shocks.
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Flares emitted along the knot
path

If gamma-ray flares are produced along the path of traveling knots, from the burst
duration, the travelled path should be ~30-50pc (assuming a bulk Lorentz factor of 10)

the energy density of seed photon from BLR, and from the dusty torus should be
Ueyt ~1/d?

the magnetic field energy density should be reduced of the same amount

Ug ~1/d*

Both radio knot emission, both gamma-ray emission should be extremely weak toward
the path end

Could acceleration of superluminal radio features compensate for the decrease of
energy density along the path (actually 18% of moving knots observed at 47GHz show
acceleration, Weaver 2022)?



Magnetic reconnection scenario

4 at ~1 TeV:
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Figure 2. A sketch of the envelope-flare structure of the emission from a
reconnection layer. The envelope duration corresponds to that of the recon-

Recent scenario for magnetic
reconnections proposed for strongly
magnetized jets (Giannios 2013)
includes an envelope emission
(lasting ~1 day) powered by
plasmoids, together with fast flares
(lasting ~10 min) generated by grown
“monster plasmoids”.

In low magnetized plasma (such as at
several parsec), reconnection time
scales are longer, and longer flares
(days to weeks) could arise (Giannios
2013).

“Monster plasmoids” contain
energetic particles freshly injected by
the reconnection event (Uzdensky et
al. 2010)

Large variability observed when the
reconnection layer is aligned with the

nection event: feny = I'/I"jec. Monster plasmoids power fast flares which jet a_XiS and Wlth the Observer |ine Of

show exponential rise and last for fg,. = 0.11'/ dpc. For an envelope of ~1d
blazar flaring, the model predicts that monster plasmoids result in ~10-min

flares. Giannios 2013

sight (Christie 2019)



Comparison with results for
Quasars

» optical variability of quasar can be described
wth a damped random walk with Tgamping Of the

order of several hundread of days (Kelly 2009,
lvezic & McLeod 2013);

* Tgamping ~110-260 d for SMBH with mass in the
range of 108-10° (Burke 2021);

e Radio Loud Quasars show excess white noise
for timescale below 1 day (kelly 2009);



Conclusions

» Waiting time distribution of FSRQs can be modeled with a set of overlapping bursts of
flares with burst duration of ~0.6y, burst rate ~1.3y™ + a fast component (for At < 1d)

« If flares are generated while the knot is crossing a stationary feature along the jet
- the knot size along the jet should be ~2pc

 Flares could be generated along the path of superluminal knots traveling for ~30-50pc

- but both the magnetic field energy density both the external photon energy density decreases
with 1/d? (why do we see those fading radio features?)

- Could acceleration of superluminal radio features compensate for the decrease of energy density
along the path?

« Magnetic reconnection could account for the observed waiting times if the magnetic field
instabilities generating reconnection events (or the duration of plasma injection) lasts 0.6y, and if
the generation rate of instabilities (or the rate of sporadic plasma injection) is ~1.3y1

» Could the waiting time distribution have the same origin that in Quasars?

* While the short component represents a small subset of waiting times, it was found during 3/5

Fermi-LAT ToO campaings during bright FSRQs flares. It could witness that structured flares are
not so rare.
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