Development of an Imaging Atmospheric Cherenkov Telescope Array for Ultra-High Energy Gamma-ray Astronomy

Nikolas Korzoun¹, Aaron Brown², Jamie Holder¹, Paul Horowitz³, Wei Liu⁴, Jérôme Maire², Elisa Pueschel⁵, Nicolas Rault-Wang⁴, Dan Werthimer⁴, James Wiley², Shelley Wright²

¹University of Delaware

²University of California San Diego

³Harvard University

⁴University of California Berkeley

⁵Ruhr-Universität Bochum

BARTOL RESEARCH

Ultra High Energy (UHE)

Nikolas Korzoun nkorzoun@udel.edu

2

[1] The First LHAASO Catalog of Gamma-ray Sources, Cao et al., 2023

Ultra High Energy (UHE)

- 43 UHE sources (E > 100 TeV) [1]
 - 9 of these have no known TeV association
 - Largely extended to ground detectors
- Imaging atmospheric Cherenkov telescope (IACT) arrays
 - Excellent angular resolution
 - Large effective area per detector
 - **Not** currently optimized for UHE sensitivity
- If observing UHE is the primary goal, the most effective array will consist of many small and affordable telescopes that are sparsely separated

This is that small telescope

4

Nikolas Korzoun nkorzoun@udel.edu

This is that small telescope

Nikolas Korzoun nkorzoun@udel.edu

This is **PANOSETI**

Nikolas Korzoun nkorzoun@udel.edu

PANOSETI Overview

- Ultrafast optical transients [2]
- Two stations separated by ~ 1 km tessellating the sky in each hemisphere
 - This initial plan has since evolved as a result of this work

Nikolas Korzoun nkorzoun@udel.edu

[2] Panoramic optical and near-infrared SETI instrument: overall specifications and science program, Wright et al., 2018

Telescope Design

- Modular design [3], [4]
 - 0.5 m Fresnel lens
 - 1024 pixel SiPM camera 0.31° pixel
 - \circ ~ 10° x 10° field of view
 - Commercially available tracking mount
 - < 10 p.e. Trigger threshold
 - Orders of magnitude cheaper than traditional IACTs
- Different from other detectors
 - FAMOUS, IceAct, HAWC'S Eye, TAIGA-HiScore, ASTRI, SST

Nikolas Korzoun nkorzoun@udel.edu

8

[3] Panoramic optical and near-infrared SETI instrument: optical and structural design concepts, Cosens et al. 2018
[4] Panoramic optical and near-infrared SETI instrument: prototype design and testing, Maire et al., 2018

One scientist's noise is another's signal

Nikolas Korzoun nkorzoun@udel.edu

Observations Coincident With VERITAS

- Operated at VERITAS for 5 nights in November 2021 [5]
- Observed the Crab Nebula
 - \circ 6 hours
- Gamma-ray initiated showers tagged by VERITAS and time-matched with PANOSETI
- Coincident events at < 1 Hz
- 3 gamma rays detected by both PANOSETI telescopes in coincidence with VERITAS
 - \circ Each with E > 10 TeV

Nikolas Korzoun nkorzoun@udel.edu

[5] Panoramic SETI: Program Update and High-Energy Astrophysics Applications, J. Maire, et al., 2021

Air Shower Image (Uncalibrated)

Nikolas Korzoun nkorzoun@udel.edu

Air Shower Image (Uncalibrated)

Nikolas Korzoun nkorzoun@udel.edu

More Full-Camera Images

Nikolas Korzoun nkorzoun@udel.edu

CORSIKA Simulations

- Image cleaning first developed and tested on simulated images [6]
- Simulated air showers are difficult to reconstruct when cleaned images contain fewer than 60 p.e.
- Predicted energy threshold is about 10 TeV with 150 m telescope spacing

ELAWARE.

Nikolas Korzoun nkorzoun@udel.edu

14

[6] PeV Gamma-ray Astronomy With Panoramic Optical SETI Telescopes, Korzoun et al., 2023

March 2024 Array Configuration Lick Observatory, Mt Hamilton, CA

Nikolas Korzoun nkorzoun@udel.edu

Easy, Efficient Deployment

- Assembly, power, and network configuration of a 3-telescope IACT array took a team of 6 people a few days to deploy
- Two observers packed up everything and left in only one afternoon

Data Acquisition

Control Room

Nikolas Korzoun nkorzoun@udel.edu

On-Sky Trigger Rate

- Each color corresponds to a unique quadrant of one camera of one telescope
- 2 adjacent pixels within the same quadrant of the camera must be above threshold to trigger a readout
- 6.5 p.e. threshold was used for subsequent observations

Nikolas Korzoun nkorzoun@udel.edu

3-Telescope Coincident Event

Uncalibrated

Nikolas Korzoun nkorzoun@udel.edu

3-Telescope Coincident Event, Cleaned

Pedestal Subtracted

Ongoing work

- Planning another observing run at Lick Observatory at the end of this October
 - Crab Nebula
- Comparison of background data with simulations
 - Define selection criteria for gamma/hadron separation
- Procurement for a 10 telescope array is in progress
 - Palomar Observatory (San Diego) under consideration along with Lick Observatory
 - Will allow us to study UHE sources in higher resolution
- <u>Dark100</u>
 - Large array of PANOSETI telescopes probing dark matter > 100 TeV

Possible locations for deployment at Palomar Observatory

Nikolas Korzoun nkorzoun@udel.edu

Backup

Nikolas Korzoun nkorzoun@udel.edu

VARE

Angular Resolution (10 TeV threshold) *

Angular error 68% containment (2+ tel): 0.23°

Angular error 68% containment (3 tel): **0.11°**

Nikolas Korzoun nkorzoun@udel.edu

23

[1] The First LHAASO Catalog of Gamma-ray Sources, Cao et al., 2023

Angular Resolution*

Nikolas Korzoun nkorzoun@udel.edu

Effective Area*

Nikolas Korzoun nkorzoun@udel.edu