Searching for Signatures of Internal Gamma-ray Absorption in High-redshift Blazars

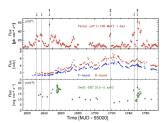
A. Dmytriiev¹, A. Acharyya², M.Böttcher¹

¹ NWU, Potchefstroom, South Africa, ² CP3-origins, SDU, Odense, Denmark

8th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy

Outline

- Introduction to Blazars
 - Blazars: what can spectra tell us?
 - γ - γ opacity
- Searching for Opacity Features in High-z Blazars
 - Source selection and data analysis
 - Opacity model
 - Optical data: target photon field
 - Modeling results
 - Implications
- Future work and prospects
- Summary


Outline

- Introduction to Blazars
 - Blazars: what can spectra tell us?
 - γ - γ opacity
- Searching for Opacity Features in High-z Blazars
 - Source selection and data analysis
 - Opacity model
 - Optical data: target photon field
 - Modeling results
 - Implications
- Future work and prospects
- Summary

Blazars: phenomenon and properties

Blazars - radio-loud AGN with a jet aligned with the line of sight

- non-thermal emission from radio to γ -rays
- two-bump SED
- highly variable!
 - Flares: flux
 ¬ by a factor
 ~10 over short time-scales
 minutes − weeks
 - **High states**: $t_{
 m var} \sim$ weeks years

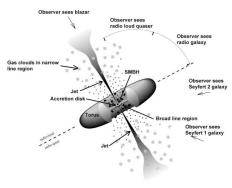
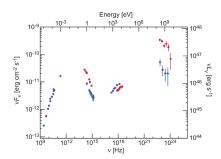



Figure: Unified view of an AGN (credit: Urry & Padovani (1995)

Spectral information: measurement of MWL SEDs

- Emitting particle spectra
- Physical conditions in the emitting zone
- MWL emission origin
- Contributions of different emission components
- Physical processes / acceleration mechanisms

Fermi-I? Fermi-II? magnetic reconnection?

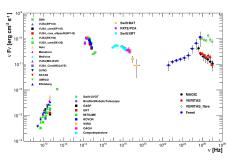


Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during a

Different target radiation fields

Depending on location of $\gamma\text{-ray}$ emitting zone in the jet, $\gamma\text{-rays}$ are exposed to different photon fields:

- Accretion disk (UV, $r \lesssim 0.01$ pc)
- Broad line region (optical-UV, $r \sim 0.01 0.1$ pc)
- Dusty torus (infrared, $r \gtrsim 0.1 \text{ pc}$)

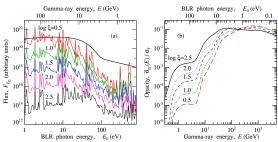


Figure: Left: typical spectrum of BLR. Right: γ - γ absorption cross-section (relative to $\sigma_{\rm T}$) on BLR photon field for different energies of γ -rays. Credit: Poutanen & Stern (2010)

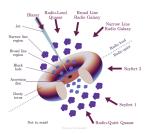
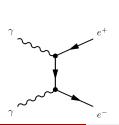
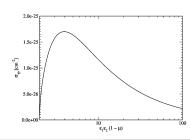


Figure: Scheme illustrating different AGN components. Credit: Emma Alexander

$\gamma - \gamma$ absorption: theory

$$\gamma + \gamma
ightarrow e^- + e^+$$


Threshold of pair production: $\epsilon_1 \epsilon_2 \geq 2(1-\mu)^{-1}$, $\mu = \cos \theta$


Cross-section (angle-dependent):

$$\sigma_{\gamma\gamma}(\epsilon_1,\epsilon_2,\mu) = \frac{3}{16}\sigma_{\mathrm{T}}(1-y^2)\left([3-y^4]\times\ln\left[\frac{1+y}{1-y}\right]-2y[2-y^2]\right)$$

with
$$y = \sqrt{1 - 2/(\epsilon_1 \epsilon_2 [1 - \mu])}$$

Peak in cross-section at $x = \epsilon_1 \epsilon_2 (1 - \mu) = 4$ ($\epsilon = 2\epsilon_{\rm thr}$), with $\sigma_{\gamma\gamma}^{\rm peak} \approx 0.25\sigma_{\rm T}$

Absorption features due to different target radiation fields

Target photon fields with different spectra induce different absorption features in observed γ -ray spectra

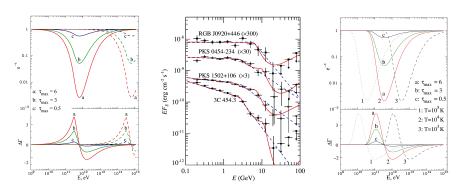


Figure: Opacity features induced by power-law seed photon field (left), BLR field (center) and blackbody (right).

Credit: Poutanen & Stern (2010) and Aharonian et al. (2008)

Outline

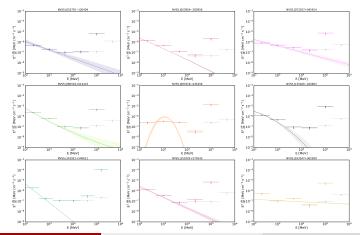
- Introduction to Blazars
 - Blazars: what can spectra tell us?
 - γ - γ opacity
- Searching for Opacity Features in High-z Blazars
 - Source selection and data analysis
 - Opacity model
 - Optical data: target photon field
 - Modeling results
 - Implications
- Future work and prospects
- 4 Summary

Motivation of our study

- ullet For high-z sources, the opacity features move to lower energies in the γ -ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For z = (3-4): absorption starts from 5-6 GeV!
 - → best Fermi-LAT sensitivity!
- Strong optical/ γ -ray signal \to high accretion disk luminosity \to stronger opacity
- What can we learn?
 - (1) The location of γ -ray production site in the jet
 - (2) Distribution of target photon fields within the source
 - (3) Emission scenarios
 - (4) Constraints on the opacity: how γ -rays avoid absorption?

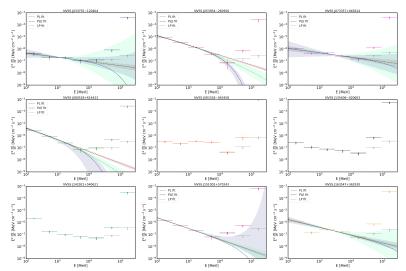
Source selection

We select 9 γ -ray detected FSRQs with z>3 (Paliya et al. (2020))


Name	R.A.	Decl.	Redshift	$R_{\rm mag}$	Fradio
	(deg)	(deg)			(mJy)
		γ -Ray-detected blazars			
NVSS J033755-120404	54.48104	-12.06793	3.442	20.19	475.3
NVSS J053954-283956	84.97617	-28.66554	3.104	18.97	862.2
NVSS J073357+045614	113.48941	4.93736	3.01	18.76	218.8
NVSS J080518+614423	121.32575	61.73992	3.033	19.81	828.2
NVSS J083318-045458	128.32704	-4.9165	3.5	18.68	356.5
NVSS J135406-020603	208.52873	-2.10089	3.716	19.64	733.4
NVSS J142921+540611	217.34116	54.10309	3.03	19.84	1028.3
NVSS J151002+570243	227.51216	57.04538	4.313	19.89	202.0
NVSS J163547+362930	248.94681	36.49164	3.615	20.55	151.8

Fermi-LAT data analysis

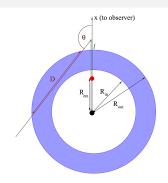
Analysis: A. Acharyya

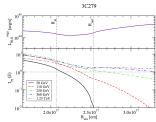

- Energy range: 0.1 GeV 1 TeV
- 1.5 bins per decade of energy (6 bins / 4 decades)
- 15 years of data

- Standard selection cuts
- Spectral model:4FGL catalog shape(power law / logparabola)

Fermi-LAT data analysis

- 2 bins per decade of energy (used for the modeling)

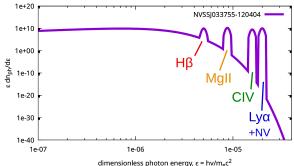

Model for γ - γ absorption in the BLR


We use the model and code by Böttcher & Els (2016)

- Full angle-dependent γ - γ absorption cross-section
- BLR geometry: a shell with inner and outer radius R_1 and R_2 . Assume $u_{\rm BLR} = const$ everywhere
- Computes **optical depth** au as a function of γ -ray energy E_{γ} and distance of the emitting zone from the central engine $R_{\rm ez}$

$$u_{\rm BLR} = \int_0^\infty d\epsilon \int_0^\infty dr \ 2\pi \int_{-1}^1 r^2 d\mu \ \frac{j_\epsilon(\mathbf{r})}{4\pi r^2 c} =$$
$$= \frac{1}{2c} \int_0^\infty d\epsilon \ j_\epsilon^0 \int_{-1}^1 d\mu \ D(\mu)$$

$$\begin{split} \tau_{\gamma-\gamma}(\epsilon_{\gamma},d) &= \frac{1}{2c} \int_{R_{\rm ez}}^{\infty} dl \int_{-1}^{1} d\mu \int_{0}^{\infty} d\epsilon \, \frac{j_{\epsilon}^{0} D(\mu)}{\epsilon m_{\rm e} c^{2}} \, \times \\ &\quad \times \, (1-\mu_{i}) \, \sigma_{\gamma-\gamma}(\epsilon_{\gamma},\epsilon,\mu_{i}) \end{split}$$


Target radiation field: $u_{\nu,\mathrm{rad}}(\nu)$

We use a template for BLR spectrum with a blackbody continuum ($T=1500~\mathrm{K}$) and a set of 4 emission lines as measured in real optical data. We assume that the total BLR luminosity (sum of 4 lines + continuum) is (always) 10% of $L_{\rm D}$

$$u_{\rm line} = \frac{L_{\rm line}}{4\pi R_{\rm BLR}^2 c}$$

$$u_{
m cont} = u_{
m BLR,tot} - rac{\Sigma L_{
m line}}{4\pi R_{
m BLR}^2 c}$$

$$u_{\rm BLR,tot} = \frac{0.1 L_{\rm D}}{4\pi R_{\rm BLR}^2 c}$$

Internal Absorption in High-z Blazars

Luminosity of the accretion disk

We assume that the ${\bf BLR}$ dominates the target radiation field, with the BLR covering fraction 10%

$$u_{\rm BLR,tot} = \frac{0.1 L_{\rm D}}{4\pi R_{\rm BLR}^2 c}$$

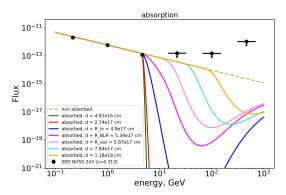
$$R_{
m BLR}pprox 0.1~L_{
m D,46}^{1/2}~{
m pc}$$

e.g. Hayashida et al. (2012)

We adopt $L_{\rm D}$ from Paliya et al. (2020) – estimates based on broadband SED modeling

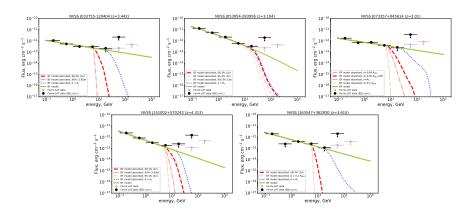
Source #	Name (NVSS)	$\log 10 (L_{ m D}~{ m erg}~{ m s}^{-1})$	
1	NVSS J033755-120404	46.36	
2	NVSS J053954-283956	46.70	
3	NVSS J073357+045614	46.60	
4	NVSS J080518+614423	46.34	
5	NVSS J083318-045458	47.15	
6	NVSS J135406-020603	46.78	
7	NVSS J142921+540611	46.26	
8	NVSS J151002+570243	46.63	
9	NVSS J163547+362930	46.30	

Luminosity of optical BLR emission lines

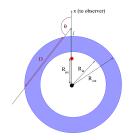

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know L_{Lyα} (+N V) very accurately
 → induces opacity features at lowest γ-ray energies
- We adopt $L_{
 m MgII}$ and $L_{
 m Heta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source #3)
- For $L_{Ly\alpha}$ (includes N V):
 - source #1, 2: old measurements from Osmer et al. (1994) only
 - source #3: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for $L_{\rm CIV}$)
 - source #4, 5: no information at all (and the measured line ratios are inconsistent with Francis et al.)
 - source #6, 7, 8, 9: accurate measurement through SDSS DR18

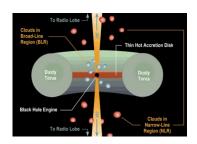
Luminosity of optical BLR emission lines

Source #	Name (NVSS)	z	$\log 10(L_{ m L_{ m V}lpha+NV})$	$log10(L_{ m CIV})$	$\log 10(L_{ m MgII})$	$\log 10(L_{{ m H}eta})$
1	J033755-120404	3.442	44.8941	44.268 ± 0.193	44.73 ± 0.09	44.24 ± 0.05
2	J053954-283956	3.104	44.7335	45.091 ± 0.091	44.38 ± 0.04	43.21 ± 0.09
3	J073357+045614	3.01	44.613 ± 0.063	44.412 ± 0.063	44.09 ± 0.02	44.01 ± 0.06
4	J080518+614423	3.033	x	44.743 ± 0.095	44.39 ± 0.03	43.79 ± 0.06
5	J083318-045458	3.5	x	45.220 ± 0.111	44.63 ± 0.01	44.47 ± 0.01
6	J135406-020603	3.716	45.092 ± 0.027	44.552 ± 0.038	44.39 ± 0.06	43.95 ± 0.09
7	J142921+540611	3.03	44.36 ± 0.04	44.241 ± 0.018	44.07 ± 0.09	43.79 ± 0.11
8	J151002+570243	4.313	45.245 ± 0.019	44.857 ± 0.059	44.84 ± 0.09	x
9	J163547+362930	3.615	44.8 ± 0.22	44.305 ± 0.023	44.42 ± 0.02	43.75 ± 0.04

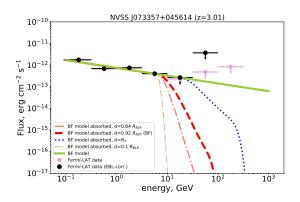

Approach

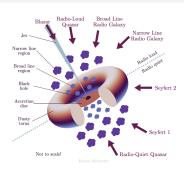
- We fit each spectrum with a power law or logparabola (4FGL catalog shape)
- We γ - γ absorb each model using the opacity code (with the relevant $L_{\rm D}$), while varying the location of the γ -ray production region
- Folded model (average over bins): $\chi^2 \leq \chi^2_{\min} + 1$ indicates allowed locations in the jet (1σ)

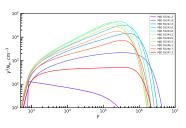

Fit results


- 3/9 sources do not have enough statistics
- Of remaining 6 sources, 5 have Lylpha information available
- Lower limit of distance from SMBH (only) for 4/9 sources
- Spectrum of Source #3 is consistent with opacity model

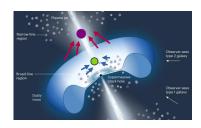
Constraints on the γ -ray production zone location


Source #	Name (NVSS)	$R_{ m BLR}$ (cm)	$R_{\mathrm{ez}}/R_{\mathrm{BLR}}$ (1σ)	(1.65σ)	$\chi^2_ u$ (non-abs)
1	J033755-120404	4.67×10^{17}	≥ 0.92	≥ 0.48	2.43/2
2	J053954-283956	$6.9 imes 10^{17}$	≥ 1.08	≥ 1.06	3.84/2
3	J073357+045614	6.16×10^{17}	= 0.92	=	5.13/2
4	J080518+614423	_	_	-	
5	J083318-045458	_	_	-	_
6	J135406-020603	_	_	-	_
7	J142921+540611	_	_	-	_
8	J151002+570243	$6.37 imes 10^{17}$	≥ 1.01	≥ 0.92	2.57/2
9	J163547+362930	4.36×10^{17}	$\bar{>}$ 0.84	NA	0.76/1


Particular case: Source #3

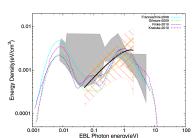

- Spectrum of Source #3 is consistent with opacity model
- An improved χ^2 ($\Delta\chi^2 < 0$) is achieved for the absorbed model in the range $R_{\rm ez}/R_{\rm BLR} \geq 0.84$
- ullet The best fit is achieved for $R_{
 m ez}/R_{
 m BLR}=0.92$ ightarrow emitting zone WITHIN BLR

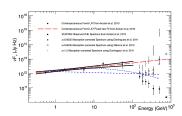
Discussion of results


- The observed cutoff in the γ-ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum → mostly lower limits on the emitting zone location
- Very particular location shocked region in the jet consistently in the vicinity of BLR shell
 - The emitting zone cannot be too far from BLR as well \rightarrow production of γ -rays via IC
- Source #2 (NVSS J053954-283956) tighter constraints can be derived (emitting zone close to inner BLR radius)

Discussion of results

- Second emitting zone?
 - full physical modeling required
 - correlation between different bands
- Hadronic models
 - $-p-\gamma$ process internal opacity
- Exotic physics, e.g. photon-axion coupling in magnetic field?


Outline


- Introduction to Blazars
 - Blazars: what can spectra tell us?
 - γ - γ opacity
- Searching for Opacity Features in High-z Blazars
 - Source selection and data analysis
 - Opacity model
 - Optical data: target photon field
 - Modeling results
 - Implications
- Future work and prospects
- 4 Summary

Constraining the EBL

The best-fit χ² for the EBL-deabsorbed intrinsic spectrum for different EBL models (Saldana-Lopez 2021; Finke 2022; Franceschini 2018; ...)

- limited statistics of the data
- full physical modeling is preferred
- Statistical approach: spectral index as a function of redshift z
 - limited selection of sources

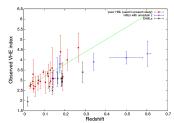


Figure: (Top): example of de-absorption of an observed γ -ray spectrum using different EBL models (Furniss et al. 2013). Bottom: distribution of observed VHE spectral index of a selection of HBLs as a function of redshift (Sinha et al. 2014)

Studying internal absorption in other blazars

• Intermediate redshift blazars (z=1-2): an optimal balance between the γ -ray statistics and the opacity feature downshift

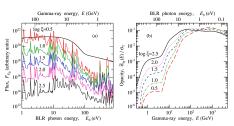


Figure: Left: typical spectrum of BLR. Right: γ - γ absorption cross-section (relative to $\sigma_{\rm T}$) on BLR photon field for different energies of γ -rays.

Credit: Poutanen & Stern (2010)

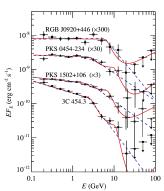
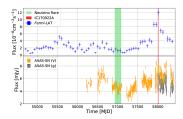


Figure: Opacity features induced by the BLR field (Poutanen & Stern (2010))

Beyond leptonic models: hadronic scenario

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$

$$\mu^{\pm} \to e^{\pm} + \bar{\nu}_{\mu}(\nu_{\mu}) + \nu_{e}(\bar{\nu}_{e})$$


TXS 0506+056

- IceCube \sim 290 TeV ν (2017) + GeV (Fermi-LAT) and VHE (MAGIC) flare
- ν -flare (2014 2015): no γ -ray activity

Assuming **photo-hadron** (rather than p-p):

$$E_{
u}^{\prime} pprox 0.05 E_{
m p}^{\prime}, ~~ s pprox E_{\gamma}^{\prime} E_{
m p}^{\prime} pprox E_{\Delta^+}^2$$

- Target field: X-ray (Böttcher et al. (2022))
- Synchrotron-supported cascade is ruled out (Reimer et al. (2019))
- ⇒ Target photons originate outside the jet?
 - ! GeV γ -rays **absorbed** on the target field
- \rightarrow Strong ν sources: WEAK at GeV γ -ray!

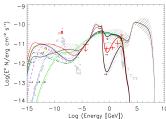


Figure: (Top) Fermi-LAT and optical LC of TXS 0506+056. Green – neutrino flare in 2014 – 2015. (Bottom) Simulations of synchrotron-supported cascades to generate the observed neutrino flare flux (credit: Reimer et al. (2019))

Prospects with CTA

The next generation IACT instrument. Operational by 202?

LST particularly helpful thanks to the lowenergy threshold and sensitivity

- Sensitivity \nearrow by a factor of ~ 10
- Northern and Southern site (La Palma and Chile)
- − Energy range: \sim 30 GeV − \sim 300 TeV
- Substantially better angular, spectral and timing resolution

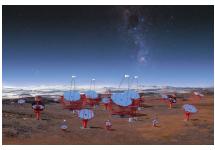
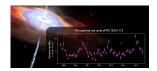


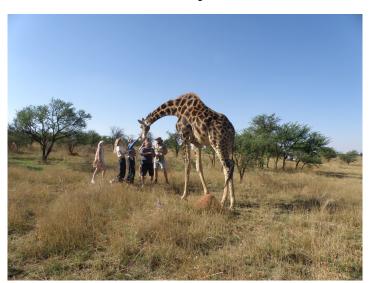
Figure: CGI rendering of the CTA array view (credit: ESO/CTA)

ightarrow Much tighter constraints on opacity, γ -ray production region location and EBL


Outline

- Introduction to Blazars
 - Blazars: what can spectra tell us?
 - γ - γ opacity
- Searching for Opacity Features in High-z Blazars
 - Source selection and data analysis
 - Opacity model
 - Optical data: target photon field
 - Modeling results
 - Implications
- Future work and prospects
- 4 Summary

Summary


- ullet Exploring high-redshift blazars allows to search for γ - γ opacity signatures at lower energies
- We established constraints on the location of the γ -ray production region in the jet for 5 blazars with redshifts z=3-4.3
- One needs to understand why the γ -ray production (shocked region in the jet) takes place mostly close to the BLR outer boundary
- One of the sources displays a possible $\gamma-\gamma$ opacity feature at energy \sim 8 GeV. Emitting zone located within the BLR close to the INNER boundary
- Full modeling required leptonic, hadronic, multi-zone models
- Promising prospects with CTA

⇒ ApJ paper in preparation, to be submitted (hopefully) within this month

Thank you!

