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Radio-galaxies: the Fanaroti-Riley classification

3C 31, FR II, NRAO

What we can observe:

1043—44 1

FR I:. low-power jets erg - s~ °, continuous radio
emission, disrupts at the kpc scales in a rich environment.

FR II: high power jets, localized emission (knots, lobes),
remains relativistic until the hotspot 1n a poor
environment.

If useful, the IFR classification does not offer a
satistying physical scenario that helps to
understand the morphological and multi-
wavelength characteristics of radio-galaxies.

Cygnus A, FR I, NRAO.



A promising scenario: energy dissipation by mass-loading

Giant elliptical galaxy
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» Simulations of 2000 pc long jets from quasi-1D simulations
(Komuissarov et al. 2015) with Ly ;. = 10% erg - s71.
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T'he radio-optical emission otfsets

» Gaia Data Release 2 confirmed VLBI-Gaia

centroid align with the jet direction and 73%b6 of

the objects show a positive oftfset (Plavin et al.

2019).

» VLBI-Gaia positive offsets suggest presence of

bright and extended optical jets, with projected
length ot 20 — 50 pc.
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Figure 1. Cartoon explaining two opposite VLBI-to-Gaia offset directions with respect to the parsec-scale jet: downstream ¥ = (0° and upstream ¥ = 1807,
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Taken from Plavin et al. 2019.
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T'he radio-optical emission oftsets
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Positive radio-optical shifts suggest presence of dissipation processes happening down the jet.

Is energy dissipation through mass-loading explain the multiwalength jet morphology?



Radiative transter: the RIPTIDE code y

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

» Convert simulation file (2D) in 3D simulation box.

One cell
» In each cell :
g LS <ne — Kye_ p) T ee,th — }/e,min and ye,max from
Gomez et al. 1995. e Vo o
e, min
eth,e

> Prescription on y, ... based on previous work with

similar procedures (Mimica et al. 2012, Fromm et

al. 2016, Fichet de Clairfontaine et al. 2021).

3D rotation
» Synchrotron parameters from Katarzynsk et al.

2001,

Jet
> Approximations to gain computation time.

S,
Z;;ZZ//QZZO
@,



Radiative transter: the RIPTIDE code y

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

» Convert simulation file (2D) in 3D simulation box.
One cell

» In each cell :

‘ LS <ne — Kye_ p) T ee,th — }/e,min and ye,max from

Gomez et al. 1995. M
eth,e

> Prescription on y, ... based on previous work with

similar procedures (Mimica et al. 2012, Fromm et

al. 2016, Fichet de Clairfontaine et al. 2021).

3D rotation
» Synchrotron parameters from Katarzynsk et al.

2001,

Jet
> Approximations to gain computation time.

S,
Z;;ZZ//QZZO
am



Radiative transter: the RIPTIDE code

- 1 ee,th pP — 2 1 — Cé_p
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Radiative transter: the RIPT'IDE code

Simulation box seen from above

Lane of sight

0

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

> Rotation of the emission maps according to ;...

> Doppler boosting according to 6, and local y;,

allowing us to transtorm useful quantities 1n the

observer’s frame.

> Integration of the emission “face-on” along the line

of sight,

I.;=1.;_ exp (—Ty;i> +5,.4 (1 — exp (‘%;i)) .

» Distance between the source and the Earth,

S

p

F, = e
L

1X

(1+2)1.



Radio Optical

Radio-optical emission maps

Computation of radio (3 x 10!! Hz) and optical

(5 x 10'* Hz) synchrotron maps:

» Flux selection criteria from the Gaia mission

(F, > 10~* Jy) and in the radio (VLBI - F, > 107 Jy).

» Positive shifts are observed depending on the mass

loading profiles and on the stellar distribution 7,

» Shift distance spanned between 0 — 100 pc (de-
projected).

» Some simulations show null or negative shifts,

consistent with pure adiabatic cooling of electrons.

3 | R [mas| |



Radio-optical offsets

Histogram of shift positions / angles reveals:

» 1000 simulations done with random 6, and z for

various values of M.

» Only a limited amount of simulations have a detectable

optical emission by Gaia and a non zero shift.

» Distmibution of sources centred on ¥ ~ 0° with a tail

that evolves with M.

Evolution of d,,, for a fix M shows:

» Impact of gas / stellar distribution. For high M, the

offset converge to zero.

» d,,, > 0 mas emerge 1n an average mass-loss rate

between M ~ [1071,1071%| M - yr .
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Color magnitude and stellar population

Accretion disks: Bluer optical objects are linked to

the presence of an accretion disk, and negative radio-
optical offset / redder objects correlate with a positive
radio-optical offset (Plavin et al. 2019).

Color magnitude: Larger positive Am suggests a _1.5-
redder jet, which corresponds to low M = corresponds
to higher radio-optical offsets.

o
|
2
Stellar population: The final M range corresponds £ 1.0-
to K/M-type stars which are commonly observed n §
elliptical galaxies (O Fionnagain et al. 2020).

+ potential

0.9 contribution
T'his population might aftect the radio-optical oftset . | - ,Q | ,., .. from a stellar
and color magnitude, pot.entially making jets appear 10~ | 10~19 population.
redder and with larger offset. M Mg - yr_l]

10



T'he mass-loading scenario: implications

Observational biases: Doopler boosting plays a

major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset,

observed at low 6, . and higher z, while radio-galaxies

and Seyfert at higher 6_, . and lower z.

dapp |Mas]

Jet power: Based on optical observations, the offset

appears as a unique tool to constraint the jet power.

Gamma-ray emission: Jet-star interactions are often

listed to explain gamma-ray emission in jetted AGN

<

M=21x10"" Mg -yr- —— M =10x10"" M, -yr!

(lorres et al. 2019) and 1n the production of very- e M —85x 101 My g1t N =42 % 100 M, -yr-! === — 0.7 mas

. . M=10x10"" Mg -yr™!  —— M=64x10"" My -yr=!  =—'= d,p = 2.3 mas

energetic cosmic rays (Wykes et al. 2014). W m L6 x 101 My oyrl —— I — 85 % 10-1 My oyrl ooeee T = 7.2 mas
1
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Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar
winds influences jet deceleration and creates radio-optical
ofisets; these offsets are usetul for probing galaxy
properties.

Influence of stellar populations: |'he presence and
distribution of K/M-type stars in host galaxies atfect jet
emissions and offsets, providing insights into the average
stellar mass-loss rates.

Observational implications: Offsets and jet emissions
vary with redshift, observation angle, and jet power, which
could inform future observational strategies to study AGN
jets and their environments.

Observational evidences: Promising qualitative
comparison with work of Plavin et al. 2019 underlines the
powerful use of radio-optical offset to study AGN.
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Current status: Paper Jet-Star Interactions:
Shedding Lights into Galaxy Properties
submitted for publication.

Jet power: Study the presence and characteristics of radio-

optical offsets for a range of jet power.

More refine set-up: inclusion of radiative cooling,

presence of accretion disk, stellar population, etc.

Direct comparison: Apply instrumental eftects (Gaia
angular resolution) to directly apply our model to a set of

sources showing oftsets.

High-energy emission: derivation of high and very-high

energy emission 1n the hight of future observatories (G'TA).
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