

MINISTERIO DE CIENCIA, INNOVACIÓN (UNIVERSIDADES

Funded by the **European Union NextGenerationEU**

Max-Planck-Institut für Radioastronomie

Deceleration of FR I jet: elucidating the radio-optical shifts

Gaëtan Fichet de Clairfontaine* in collaboration with Manel Perucho, José-María Martí and Yuri Kovalev.

*<u>gaetan.fichet@uv.es</u>

2024 8th Heidelberg International Symposium on High Energy Gamma Ray Astronomy Milano, 2-6 September 2024

3rd Sept. 2024

Radio-galaxies: the Fanaroff-Riley classification

What we can observe:

environment.

- **FR I**: low-power jets 10^{43-44} erg \cdot s⁻¹, continuous radio emission, disrupts at the kpc scales in a rich environment.
- FR II: high power jets, localized emission (knots, lobes), remains relativistic until the hotspot in a poor

If useful, the FR classification does not offer a satisfying physical scenario that helps to understand the morphological and multiwavelength characteristics of radio-galaxies.

Cygnus A, FR I, NRAO.

A promising scenario: energy dissipation by mass-loading

A promising scenario: energy dissipation by mass-loading

Based on the work by Anglés-Castillo, Perucho et al. 2021:

- Simulations of 2000 pc long jets from quasi-1D simulations (Komissarov et al. 2015) with $L_{k,jet} = 10^{43} \text{ erg} \cdot \text{s}^{-1}$.
- Pair plasma jets with mean stellar mass-losses ranging from 2×10^{-12} to 10^{-9} M_{\odot} · yr⁻¹, for different gas of stellar distribution ($r_{\rm c}$, $r_{\rm c,s}$) that can range from 0.5 to 1.5 kpc.
- Increase of the thermal energy at long distance from the jet base (Bowman et al. 1996), and dilution of e⁻, e⁺ from mass-loading of protons.
- Large enough mass loading causes jet expansion and deceleration: promising scenario for radio-galaxy morphologies.

Model J4QC (Anglés-Castillo et al. 2021).

A promising scenario: energy dissipation by mass-loading

Based on the work by Anglés-Castillo, Perucho et al. 2021:

- Simulations of 2000 pc long jets from quasi-1D simulations (Komissarov et al. 2015) with $L_{k,iet} = 10^{43} \text{ erg} \cdot \text{s}^{-1}$.
- Pair plasma jets with mean stellar mass-losses ranging from 2×10^{-12} to 10^{-9} M_{\odot} · yr⁻¹, for different gas of stellar distribution (r_c , $r_{c.s}$) that can range from 0.5 to 1.5 kpc.
- Increase of the thermal energy at long distance from the jet base (Bowman et al. 1996), and dilution of e^- , e^+ from mass-loading of protons.
- Large enough mass loading causes jet expansion and deceleration: promising scenario for radio-galaxy morphologies.

Model J4RA (Anglés-Castillo et al. 2021).

- Gaia Data Release 2 confirmed VLBI-Gaia centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- VLBI-Gaia positive offsets suggest presence of bright and extended optical jets, with projected length of 20 - 50 pc.

Taken from Plavin et al. 2019.

- Gaia Data Release 2 confirmed VLBI-Gaia centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- VLBI-Gaia positive offsets suggest presence of bright and extended optical jets, with projected length of 20 - 50 pc.

Taken from Plavin et al. 2019.

- Gaia Data Release 2 confirmed VLBI-*Gaia* centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- VLBI-*Gaia* positive offsets suggest presence of bright and extended optical jets, with projected length of 20 – 50 pc.

Taken from Plavin et al. 2019.

- Gaia Data Release 2 confirmed VLBI-*Gaia* centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- VLBI-*Gaia* positive offsets suggest presence of bright and extended optical jets, with projected length of 20 – 50 pc.

Positive radio-optical shifts suggest presence of dissipation processes happening down the jet.

Is energy dissipation through mass-loading explain the multiwalength jet morphology?

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

- Convert simulation file (2D) in 3D simulation box.
- In each cell :
 - $n_{\rm e} (n_{\rm e} = K \gamma_{\rm e}^{-p}) + e_{\rm e,th} = \gamma_{\rm e,min}$ and $\gamma_{\rm e,max}$ from Gomez et al. 1995.
- Prescription on γ_{e,min} based on previous work with similar procedures (Mimica et al. 2012, Fromm et al. 2016, Fichet de Clairfontaine et al. 2021).
- Synchrotron parameters from Katarzynski et al.
 2001,
 - Approximations to gain computation time.

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

- Convert simulation file (2D) in 3D simulation box.
- In each cell :
 - $n_{\rm e} (n_{\rm e} = K \gamma_{\rm e}^{-p}) + e_{\rm e,th} = \gamma_{\rm e,min}$ and $\gamma_{\rm e,max}$ from Gomez et al. 1995.
- Prescription on γ_{e,min} based on previous work with similar procedures (Mimica et al. 2012, Fromm et al. 2016, Fichet de Clairfontaine et al. 2021).
- Synchrotron parameters from Katarzynski et al.
 2001,
 - Approximations to gain computation time.

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

- Convert simulation file (2D) in 3D simulation box.
- In each cell :
 - $n_{\rm e} (n_{\rm e} = K \gamma_{\rm e}^{-p}) + e_{\rm e,th} = \gamma_{\rm e,min}$ and $\gamma_{\rm e,max}$ from Gomez et al. 1995.
- Prescription on γ_{e,min} based on previous work with similar procedures (Mimica et al. 2012, Fromm et al. 2016, Fichet de Clairfontaine et al. 2021).
- Synchrotron parameters from Katarzynski et al.
 2001,
 - Approximations to gain computation time.

Simulation box seen from above

The RIPTIDE (Fichet DC et al. 2021, 2022) code :

- Rotation of the emission maps according to θ_{obs} .
- Doppler boosting according to θ_{obs} and local γ_j,
 allowing us to transform useful quantities in the observer's frame.
- Integration of the emission "face-on" along the line of sight,

$$I_{\nu;i} = I_{\nu;i-1} \exp\left(-\tau_{\nu;i}\right) + S_{\nu;i} \left(1 - \exp\left(-\tau_{\nu;i}\right)\right).$$

Distance between the source and the Earth,

$$F_{\nu} = \frac{S_{\text{pix}}}{D_{\text{L}}^2} (1+z) I_{\nu}.$$

Radio-optical emission maps

Computation of radio $(3 \times 10^{11} \text{ Hz})$ and optical $(5 \times 10^{14} \text{ Hz})$ synchrotron maps:

- ► Flux selection criteria from the *Gaia* mission $(F_{\nu} \ge 10^{-4} \text{ Jy})$ and in the radio (VLBI - $F_{\nu} \ge 10^{-3} \text{ Jy})$.
- Positive shifts are observed depending on the mass
 loading profiles and on the stellar distribution r_{c,s}
 - Shift distance spanned between 0 100 pc (deprojected).
- Some simulations show null or negative shifts,
 consistent with pure adiabatic cooling of electrons.

Radio-optical offsets

Histogram of shift positions / angles reveals:

- 1000 simulations done with random θ_{obs} and z for various values of \dot{M} .
- Only a limited amount of simulations have a detectable optical emission by Gaia and a non zero shift.
- Distribution of sources centred on $\Psi \sim 0^{\circ}$ with a tail that evolves with \dot{M} .

Evolution of d_{app} **for a fix** \dot{M} **shows:**

- Impact of gas / stellar distribution. For high \dot{M} , the offset converge to zero.
- $d_{app} > 0$ mas emerge in an average mass-loss rate between $\dot{M} \sim [10^{-11}, 10^{-10}] M_{\odot} \cdot \text{yr}^{-1}$.

Radio-optical offsets

Histogram of shift positions / angles reveals:

- 1000 simulations done with random θ_{obs} and z for various values of \dot{M} .
- Only a limited amount of simulations have a detectable optical emission by *Gaia* and a non zero shift.
- Distribution of sources centred on $\Psi \sim 0^{\circ}$ with a tail that evolves with \dot{M} .

Evolution of d_{app} **for a fix** \dot{M} **shows:**

- Impact of gas / stellar distribution. For high \dot{M} , the offset converge to zero.
- $d_{app} > 0$ mas emerge in an average mass-loss rate between $\dot{M} \sim [10^{-11}, 10^{-10}] M_{\odot} \cdot \text{yr}^{-1}$.

Radio-optical offsets

Histogram of shift positions / angles reveals:

- 1000 simulations done with random θ_{obs} and z for various values of \dot{M} .
- Only a limited amount of simulations have a detectable optical emission by *Gaia* and a non zero shift.
- Distribution of sources centred on $\Psi \sim 0^{\circ}$ with a tail that evolves with \dot{M} .

Evolution of d_{app} **for a fix** \dot{M} **shows:**

- Impact of gas / stellar distribution. For high \dot{M} , the offset converge to zero.
- $d_{app} > 0$ mas emerge in an average mass-loss rate between $\dot{M} \sim [10^{-11}, 10^{-10}] M_{\odot} \cdot \text{yr}^{-1}$.

Color magnitude and stellar population

Accretion disks: Bluer optical objects are linked to the presence of an accretion disk, and negative radiooptical offset / redder objects correlate with a positive radio-optical offset (Plavin et al. 2019).

Color magnitude: Larger positive Δm suggests a redder jet, which corresponds to low $\dot{M} \Rightarrow$ corresponds to higher radio-optical offsets.

Stellar population: The final *M* range corresponds to K/M-type stars which are commonly observed in elliptical galaxies (Ó Fionnagáin et al. 2020).

This population might affect the radio-optical offset and color magnitude, potentially making jets appear redder and with larger offset.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, observed at low θ_{obs} and higher *z*, while radio-galaxies and Seyfert at higher θ_{obs} and lower *z*.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, observed at low θ_{obs} and higher *z*, while radio-galaxies and Seyfert at higher θ_{obs} and lower *z*.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, observed at low θ_{obs} and higher *z*, while radio-galaxies and Seyfert at higher θ_{obs} and lower *z*.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, observed at low θ_{obs} and higher *z*, while radio-galaxies and Seyfert at higher θ_{obs} and lower *z*.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, observed at low θ_{obs} and higher *z*, while radio-galaxies and Seyfert at higher θ_{obs} and lower *z*.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, observed at low θ_{obs} and higher *z*, while radio-galaxies and Seyfert at higher θ_{obs} and lower *z*.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar winds influences jet deceleration and creates radio-optical offsets; these offsets are useful for probing galaxy properties.

Influence of stellar populations: The presence and distribution of K/M-type stars in host galaxies affect jet emissions and offsets, providing insights into the average stellar mass-loss rates.

Observational implications: Offsets and jet emissions vary with redshift, observation angle, and jet power, which could inform future observational strategies to study AGN jets and their environments.

Observational evidences: Promising qualitative comparison with work of Plavin et al. 2019 underlines the powerful use of radio-optical offset to study AGN.

Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar winds influences jet deceleration and creates radio-optical offsets; these offsets are useful for probing galaxy properties.

Influence of stellar populations: The presence and distribution of K/M-type stars in host galaxies affect jet emissions and offsets, providing insights into the average stellar mass-loss rates.

Observational implications: Offsets and jet emissions vary with redshift, observation angle, and jet power, which could inform future observational strategies to study AGN jets and their environments.

Observational evidences: Promising qualitative comparison with work of Plavin et al. 2019 underlines the powerful use of radio-optical offset to study AGN.

Current status: Paper Jet-Star Interactions: Shedding Lights into Galaxy Properties submitted for publication.

Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar winds influences jet deceleration and creates radio-optical offsets; these offsets are useful for probing galaxy properties.

Influence of stellar populations: The presence and distribution of K/M-type stars in host galaxies affect jet emissions and offsets, providing insights into the average stellar mass-loss rates.

Observational implications: Offsets and jet emissions vary with redshift, observation angle, and jet power, which could inform future observational strategies to study AGN jets and their environments.

Observational evidences: Promising qualitative comparison with work of Plavin et al. 2019 underlines the powerful use of radio-optical offset to study AGN.

Current status: Paper Jet-Star Interactions: Shedding Lights into Galaxy Properties submitted for publication.

Jet power: Study the presence and characteristics of radiooptical offsets for a range of jet power.

More refine set-up: inclusion of radiative cooling, presence of accretion disk, stellar population, etc.

Direct comparison: Apply instrumental effects (*Gaia* angular resolution) to directly apply our model to a set of sources showing offsets.

High-energy emission: derivation of high and very-high energy emission in the light of future observatories (CTA).

MINISTERIO DE CIENCIA, INNOVACIÓN **YUNIVERSIDADES**

Funded by the **European Union** NextGenerationEU

Max-Planck-Institut für Radioastronomie

Thank you for your attention!

Gaëtan Fichet de Clairfontaine* in collaboration with Manel Perucho, José-María Martí and Yuri Kovalev.

*gaetan.fichet@uv.es

2024 8th Heidelberg International Symposium on High Energy Gamma Ray Astronomy Milano, 2-6 September 2024

3rd Sept. 2024

References

Anglés-Castillo, A., Perucho, M., Martí, J. M., & Laing, R. A. 2021, MNRAS, 500, 1512

Fichet de Clairfontaine, G., Meliani, Z., & Zech, A. 2022, A&A, 661, A54

Fichet de Clairfontaine, G., Meliani, Z., Zech, A., & Hervet, O. 2021, A&A, 647, A77

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1,

Komissarov, S. S., Porth, O., & Lyutikov, M. 2015, CAC, 2, 9 Perucho, M., Martí, J. M., Laing, R. A., & Hardee, P. E. 2014, MNRAS, 441, 1488

Plavin, A. V., Kovalev, Y. Y., & Petrov, L. Y. 2019, ApJ, 871, 143

Ó Fionnagáin, D., Vidotto, A. A., Petit, P., et al. 2020, MNRAS, 500, 3438