

MINISTERIO
DE CIENCIA, INNOVACIÓN **UNIVERSIDADES**

Funded by the European Union NextGenerationEU

Max-Planck-Institut für Radioastronomie

Gaëtan Fichet de Clairfontaine* in collaboration with Manel Perucho, José-María Martí and Yuri Kovalev.

***gaetan.fichet@uv.es** ¹

2024 8th Heidelberg International Symposium on **High Energy Gamma Ray Astronomy** Milano, 2-6 September 2024

Deceleration of FR I jet: elucidating the radio-optical shifts

3rd Sept. 2024

If useful, the FR classification does not offer a satisfying physical scenario that helps to understand the morphological and multiwavelength characteristics of radio-galaxies.

- **FR I**: low-power jets 10^{43-44} erg \cdot s⁻¹, continuous radio emission, disrupts at the kpc scales in a rich environment.
- **FR II**: high power jets, localized emission (knots, lobes), remains relativistic until the hotspot in a poor

What we can observe:

environment.

Radio-galaxies: the Fanaroff-Riley classification

A promising scenario: energy dissipation by mass-loading

A promising scenario: energy dissipation by mass-loading

Model J4QC (Anglés-Castillo et al. 2021).

Based on the work by Anglés-Castillo, Perucho et al. 2021:

- \blacktriangleright Simulations of 2000 pc long jets from quasi-1D simulations (Komissarov et al. 2015) with $L_{k,jet} = 10^{43} \text{ erg} \cdot \text{s}^{-1}$.
- ‣ Pair plasma jets with mean stellar mass-losses ranging from 2×10^{-12} to 10^{-9} M_⊙ ⋅ yr⁻¹, for different gas of stellar distribution $(r_{\rm c}, r_{\rm c,s})$ that can range from 0.5 to 1.5 kpc.
- ‣ Increase of the thermal energy at long distance from the jet base (Bowman et al. 1996), and dilution of e^-, e^+ from mass-loading of protons.
- ‣ Large enough mass loading causes jet expansion and deceleration: **promising scenario for radio-galaxy morphologies.**

A promising scenario: energy dissipation by mass-loading

Model J4RA (Anglés-Castillo et al. 2021).

Based on the work by Anglés-Castillo, Perucho et al. 2021:

- \blacktriangleright Simulations of 2000 pc long jets from quasi-1D simulations (Komissarov et al. 2015) with $L_{k,jet} = 10^{43} \text{ erg} \cdot \text{s}^{-1}$.
- ‣ Pair plasma jets with mean stellar mass-losses ranging from 2×10^{-12} to 10^{-9} M_⊙ ⋅ yr⁻¹, for different gas of stellar distribution $(r_{\rm c}, r_{\rm c,s})$ that can range from 0.5 to 1.5 kpc.
- ‣ Increase of the thermal energy at long distance from the jet base (Bowman et al. 1996), and dilution of e^-, e^+ from mass-loading of protons.
- ‣ Large enough mass loading causes jet expansion and deceleration: **promising scenario for radio-galaxy morphologies.**

Taken from Plavin et al. 2019.

- ‣ Gaia Data Release 2 confirmed VLBI-*Gaia* centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- ‣ VLBI-*Gaia* positive offsets suggest presence of bright and extended optical jets, with projected length of 20 − 50 pc.

Taken from Plavin et al. 2019.

- ‣ Gaia Data Release 2 confirmed VLBI-*Gaia* centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- ‣ VLBI-*Gaia* positive offsets suggest presence of bright and extended optical jets, with projected length of 20 − 50 pc.

Taken from Plavin et al. 2019.

- ‣ Gaia Data Release 2 confirmed VLBI-*Gaia* centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- ‣ VLBI-*Gaia* positive offsets suggest presence of bright and extended optical jets, with projected length of 20 − 50 pc.

- ‣ Gaia Data Release 2 confirmed VLBI-*Gaia* centroid align with the jet direction and 73% of the objects show a positive offset (Plavin et al. 2019).
- ‣ VLBI-*Gaia* positive offsets suggest presence of bright and extended optical jets, with projected length of $20 - 50$ pc.

Positive radio-optical shifts suggest presence of dissipation processes happening down the jet.

Is energy dissipation through mass-loading explain the multiwalength jet morphology?

- ‣ Convert simulation file (2D) in 3D simulation box.
- ‣ In each cell :
	- $n_e (n_e = K\gamma_e^{-p}) + e_{e,th} = \gamma_{e,min}$ and $\gamma_{e,max}$ from Gomez et al. 1995. n_e ($n_e = K\gamma_e^{-p}$) + $e_{e,th} = \gamma_{e,min}$ and $\gamma_{e,max}$
- \triangleright Prescription on $\gamma_{\text{e,min}}$ based on previous work with similar procedures (Mimica et al. 2012, Fromm et al. 2016, Fichet de Clairfontaine et al. 2021). *γ*e,min
- ‣ Synchrotron parameters from Katarzynski et al. 2001,
	- ‣ Approximations to gain computation time.

- ‣ Convert simulation file (2D) in 3D simulation box.
- ‣ In each cell :
	- $n_e (n_e = K\gamma_e^{-p}) + e_{e,th} = \gamma_{e,min}$ and $\gamma_{e,max}$ from Gomez et al. 1995. n_e ($n_e = K\gamma_e^{-p}$) + $e_{e,th} = \gamma_{e,min}$ and $\gamma_{e,max}$
- \triangleright Prescription on $\gamma_{\text{e,min}}$ based on previous work with similar procedures (Mimica et al. 2012, Fromm et al. 2016, Fichet de Clairfontaine et al. 2021). *γ*e,min
- ‣ Synchrotron parameters from Katarzynski et al. 2001,
	- ‣ Approximations to gain computation time.

- ‣ Convert simulation file (2D) in 3D simulation box.
- ‣ In each cell :
	- $n_e (n_e = K\gamma_e^{-p}) + e_{e,th} = \gamma_{e,min}$ and $\gamma_{e,max}$ from Gomez et al. 1995. n_e ($n_e = K\gamma_e^{-p}$) + $e_{e,th} = \gamma_{e,min}$ and $\gamma_{e,max}$
- \triangleright Prescription on $\gamma_{\text{e,min}}$ based on previous work with similar procedures (Mimica et al. 2012, Fromm et al. 2016, Fichet de Clairfontaine et al. 2021). *γ*e,min
- ‣ Synchrotron parameters from Katarzynski et al. 2001,
	- ‣ Approximations to gain computation time.

- \triangleright Rotation of the emission maps according to $\theta_{\rm obs}$. *θ*obs
- \rightarrow Doppler boosting according to θ_{obs} and local γ_i , allowing us to transform useful quantities in the observer's frame. *θ*obs *γ*^j
- ‣ Integration of the emission "face-on" along the line of sight,

‣ Distance between the source and the Earth,

$$
I_{\nu;1} = I_{\nu;1-1} \exp\left(-\tau_{\nu;1}\right) + S_{\nu;1}\left(1 - \exp\left(-\tau_{\nu;1}\right)\right).
$$

$$
F_{\nu} = \frac{S_{\text{pix}}}{D_{\text{L}}^2} (1+z) I_{\nu}.
$$

Simulation box seen from above

Radio-optical emission maps

Computation of radio $(3 \times 10^{11} \text{ Hz})$ and optical $(5 \times 10^{14} \text{ Hz})$ synchrotron maps:

- ‣ Flux selection criteria from the *Gaia* mission $(F_\nu \ge 10^{-4} \text{ Jy})$ and in the radio (VLBI - $F_\nu \ge 10^{-3} \text{ Jy}$).
- Positive shifts are observed depending on the mass loading profiles and on the stellar distribution $r_{\rm c,s}$
	- → Shift distance spanned between $0 100$ pc (deprojected).
- ‣ Some simulations show null or negative shifts, consistent with pure adiabatic cooling of electrons.

Histogram of shift positions / angles reveals:

- 1000 simulations done with random θ_{obs} and *z* for various values of \dot{M} .
- ‣ Only a limited amount of simulations have a detectable optical emission by *Gaia* and a non zero shift.
- \triangleright Distribution of sources centred on $\Psi \sim 0^{\circ}$ with a tail that evolves with \dot{M} .

Evolution of d_{app} for a fix \dot{M} shows:

- \blacktriangleright Impact of gas / stellar distribution. For high \dot{M} , the offset converge to zero.
- \rightarrow $d_{app} > 0$ mas emerge in an average mass-loss rate 1000 simulations done with random θ_{obs}
various values of \dot{M} .
Only a limited amount of simulations has
optical emission by *Gaia* and a non zero
Distribution of sources centred on $\Psi \sim 0$
that evolves with \dot{M} 0 mas emerge in an
[∂]n *M* ∼ [10^{−11} ,10^{−10} $\big]$ $M_{\odot} \cdot \mathrm{yr}^{-1}$

Radio-optical offsets

Histogram of shift positions / angles reveals:

- \rightarrow 1000 simulations done with random $\theta_{\rm obs}$ and *z* for various values of \dot{M} . ·
/ *M*
- ‣ Only a limited amount of simulations have a detectable optical emission by *Gaia* and a non zero shift.
- \triangleright Distribution of sources centred on Ψ ~ 0° with a tail that evolves with \dot{M} . ·
/ *M*

Evolution of d_{app} for a fix \dot{M} shows: ·
/ *M*

- \blacktriangleright Impact of gas / stellar distribution. For high \dot{M} , the offset converge to zero. ·
/ *M*
- \rightarrow $d_{app} > 0$ mas emerge in an average mass-loss rate between $\dot{M} \sim [10^{-11}, 10^{-10}] M_{\odot} \cdot yr^{-1}$. ·
/ $\dot{M} \sim \left[10^{-11}, 10^{-10}\right]~M_{\odot}\cdot \text{yr}^{-1}$

Radio-optical offsets

Histogram of shift positions / angles reveals:

- \rightarrow 1000 simulations done with random $\theta_{\rm obs}$ and *z* for various values of \dot{M} . ·
/ *M*
- ‣ Only a limited amount of simulations have a detectable optical emission by *Gaia* and a non zero shift.
- \triangleright Distribution of sources centred on Ψ ~ 0° with a tail that evolves with \dot{M} . ·
/ *M*

Evolution of d_{app} for a fix \dot{M} shows: ·
/ *M*

- \blacktriangleright Impact of gas / stellar distribution. For high \dot{M} , the offset converge to zero. ·
/ *M*
- \rightarrow $d_{app} > 0$ mas emerge in an average mass-loss rate between $\dot{M} \sim [10^{-11}, 10^{-10}] M_{\odot} \cdot yr^{-1}$. ·
/ $\dot{M} \sim \left[10^{-11}, 10^{-10}\right]~M_{\odot}\cdot \text{yr}^{-1}$

Radio-optical offsets

Color magnitude and stellar population

Accretion disks: Bluer optical objects are linked to the presence of an accretion disk, and negative radiooptical offset / redder objects correlate with a positive radio-optical offset (Plavin et al. 2019).

Color magnitude: Larger positive Δm suggests a redder jet, which corresponds to low $\dot{M} \Rightarrow$ corresponds to higher radio-optical offsets. .
/ $M \Rightarrow$

Stellar population: The final M range corresponds to K/M-type stars which are commonly observed in elliptical galaxies (Ó Fionnagáin et al. 2020). ·
/ *M*

This population might affect the radio-optical offset and color magnitude, potentially making jets appear redder and with larger offset.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, α observed at low $\theta_{\rm obs}$ and higher *z*, while radio-galaxies and Seyfert at higher $\theta_{\rm obs}$ and lower z.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, α observed at low $\theta_{\rm obs}$ and higher *z*, while radio-galaxies and Seyfert at higher $\theta_{\rm obs}$ and lower z.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, α observed at low $\theta_{\rm obs}$ and higher *z*, while radio-galaxies and Seyfert at higher $\theta_{\rm obs}$ and lower z.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, α observed at low $\theta_{\rm obs}$ and higher *z*, while radio-galaxies and Seyfert at higher $\theta_{\rm obs}$ and lower z.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, α observed at low $\theta_{\rm obs}$ and higher *z*, while radio-galaxies and Seyfert at higher $\theta_{\rm obs}$ and lower z.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Observational biases: Doopler boosting plays a major role in regards of the flux selection criteria.

Source type: quasars tends to show near-to-zero offset, α observed at low $\theta_{\rm obs}$ and higher *z*, while radio-galaxies and Seyfert at higher $\theta_{\rm obs}$ and lower z.

Jet power: Based on optical observations, the offset appears as a unique tool to constraint the jet power.

Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar winds influences jet deceleration and creates radio-optical offsets; these offsets are useful for probing galaxy properties.

Influence of stellar populations: The presence and distribution of K/M-type stars in host galaxies affect jet emissions and offsets, providing insights into the average stellar mass-loss rates.

Observational evidences: Promising qualitative comparison with work of Plavin et al. 2019 underlines the powerful use of radio-optical offset to study AGN.

Observational implications: Offsets and jet emissions vary with redshift, observation angle, and jet power, which could inform future observational strategies to study AGN jets and their environments.

Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar winds influences jet deceleration and creates radio-optical offsets; these offsets are useful for probing galaxy properties.

Influence of stellar populations: The presence and distribution of K/M-type stars in host galaxies affect jet emissions and offsets, providing insights into the average stellar mass-loss rates.

Observational evidences: Promising qualitative comparison with work of Plavin et al. 2019 underlines the powerful use of radio-optical offset to study AGN.

Observational implications: Offsets and jet emissions vary with redshift, observation angle, and jet power, which could inform future observational strategies to study AGN jets and their environments.

Current status: Paper *Jet-Star Interactions: Shedding Lights into Galaxy Properties* **submitted for publication.**

Conclusion and prospects

Jet dynamics and offsets: Mass-loading from stellar winds influences jet deceleration and creates radio-optical offsets; these offsets are useful for probing galaxy properties.

Influence of stellar populations: The presence and distribution of K/M-type stars in host galaxies affect jet emissions and offsets, providing insights into the average stellar mass-loss rates.

Observational evidences: Promising qualitative comparison with work of Plavin et al. 2019 underlines the powerful use of radio-optical offset to study AGN.

More refine set-up: inclusion of radiative cooling, presence of accretion disk, stellar population, etc.

Observational implications: Offsets and jet emissions vary with redshift, observation angle, and jet power, which could inform future observational strategies to study AGN jets and their environments.

Jet power: Study the presence and characteristics of radiooptical offsets for a range of jet power.

Direct comparison: Apply instrumental effects (*Gaia* angular resolution) to directly apply our model to a set of sources showing offsets.

High-energy emission: derivation of high and very-high energy emission in the light of future observatories (CTA).

Current status: Paper *Jet-Star Interactions: Shedding Lights into Galaxy Properties* **submitted for publication.**

MINISTERIO DE CIENCIA, INNOVACIÓN **UNIVERSIDADES**

Funded by the European Union NextGenerationEU

Max-Planck-Institut für Radioastronomie

***gaetan.fichet@uv.es** ¹³

Thank you for your attention!

3rd Sept. 2024

Gaëtan Fichet de Clairfontaine* in collaboration with Manel Perucho, José-María Martí and Yuri Kovalev.

References

Anglés-Castillo, A., Perucho, M., Martí, J. M., & Laing, R. A. 2021, MNRAS, 500, 1512 Fichet de Clairfontaine, G., Meliani, Z., & Zech, A. 2022, A&A, 661, A54

Fichet de Clairfontaine, G., Meliani, Z., Zech, A., & Hervet, O. 2021, A&A, 647, A77

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1,

Komissarov, S. S., Porth, O., & Lyutikov, M. 2015, CAC, 2, 9 Perucho, M., Martí, J. M., Laing, R. A., & Hardee, P. E. 2014, MNRAS, 441, 1488

Plavin, A. V., Kovalev, Y. Y., & Petrov, L. Y. 2019, ApJ, 871, 143 Ó Fionnagáin, D., Vidotto, A. A., Petit, P., et al. 2020, MNRAS, 500, 3438