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If  useful, the FR classification does not offer a 
satisfying physical scenario that helps to 

understand the morphological and multi-
wavelength characteristics of  radio-galaxies. 

Cygnus A, FR I, NRAO.3C 31, FR II, NRAO

What we can observe: 

FR I: low-power jets , continuous radio 
emission, disrupts at the kpc scales in a rich environment. 

FR II: high power jets, localized emission (knots, lobes), 
remains relativistic until the hotspot in a poor 
environment. 

1043−44 erg ⋅ s−1

2

Radio-galaxies: the Fanaroff-Riley classification
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A promising scenario: energy dissipation by mass-loading
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Model J4QC (Anglés-Castillo et al. 2021). 

Based on the work by Anglés-Castillo, Perucho et al. 2021: 

‣ Simulations of   long jets from quasi-1D simulations 
(Komissarov et al. 2015) with . 

‣ Pair plasma jets with mean stellar mass-losses ranging from 
 to , for different gas of  stellar 

distribution ( ) that can range from  to  kpc.  

‣ Increase of  the thermal energy at long distance from the jet 
base (Bowman et al. 1996), and dilution of   from 
mass-loading of  protons.  

‣ Large enough mass loading causes jet expansion and 
deceleration: promising scenario for radio-galaxy 
morphologies. 

2000 pc
Lk,jet = 1043 erg ⋅ s−1

2 × 10−12 10−9 M⊙ ⋅ yr−1
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Model J4RA (Anglés-Castillo et al. 2021). 

Based on the work by Anglés-Castillo, Perucho et al. 2021: 

‣ Simulations of   long jets from quasi-1D simulations 
(Komissarov et al. 2015) with . 

‣ Pair plasma jets with mean stellar mass-losses ranging from 
 to , for different gas of  stellar 

distribution ( ) that can range from  to  kpc.  

‣ Increase of  the thermal energy at long distance from the jet 
base (Bowman et al. 1996), and dilution of   from 
mass-loading of  protons.  

‣ Large enough mass loading causes jet expansion and 
deceleration: promising scenario for radio-galaxy 
morphologies. 

2000 pc
Lk,jet = 1043 erg ⋅ s−1

2 × 10−12 10−9 M⊙ ⋅ yr−1
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The radio-optical emission offsets

Taken from Plavin et al. 2019.
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‣ Gaia Data Release 2 confirmed VLBI-Gaia 

centroid align with the jet direction and 73% of  

the objects show a positive offset (Plavin et al. 

2019). 

‣ VLBI-Gaia positive offsets suggest presence of  

bright and extended optical jets, with projected 

length of  . 20 − 50 pc
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The radio-optical emission offsets

Taken from Plavin et al. 2019.

5

‣ Gaia Data Release 2 confirmed VLBI-Gaia 

centroid align with the jet direction and 73% of  

the objects show a positive offset (Plavin et al. 

2019). 

‣ VLBI-Gaia positive offsets suggest presence of  

bright and extended optical jets, with projected 

length of  . 20 − 50 pc

Positive radio-optical shifts suggest presence of  dissipation processes happening down the jet.  

Is energy dissipation through mass-loading explain the multiwalength jet morphology?
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The RIPTIDE (Fichet DC et al. 2021, 2022) code : 

‣ Convert simulation file (2D) in 3D simulation box.  

‣ In each cell : 

‣  ( ) +  =  and  from 
Gomez et al. 1995. 

‣ Prescription on  based on previous work with 
similar procedures (Mimica et al. 2012, Fromm et 
al. 2016, Fichet de Clairfontaine et al. 2021). 

‣ Synchrotron parameters from Katarzynski et al. 
2001, 

‣ Approximations to gain computation time.
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The RIPTIDE (Fichet DC et al. 2021, 2022) code : 

‣ Rotation of  the emission maps according to .  

‣ Doppler boosting according to  and local , 

allowing us to transform useful quantities in the 

observer’s frame. 

‣ Integration of  the emission “face-on” along the line 

of  sight,

 

‣ Distance between the source and the Earth, 

    

θobs

θobs γj

Iν; i = Iν; i−1 exp (−τν; i) + Sν; i (1 − exp (−τν; i)) .

Fν =
Spix

D2
L

(1 + z) Iν .

Simulation box seen from above
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Radiative transfer: the RIPTIDE code

7



Radio-optical emission maps

8

Computation of  radio ( ) and optical 
( ) synchrotron maps: 

‣ Flux selection criteria from the Gaia mission 
( ) and in the radio (VLBI - ). 

‣ Positive shifts are observed depending on the mass 
loading profiles and on the stellar distribution  

‣ Shift distance spanned between  (de-
projected). 

‣ Some simulations show null or negative shifts, 
consistent with pure adiabatic cooling of  electrons. 
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Ṁ

=
1.

6
£

10
°

1
1

M
Ø

·y
r°

1
Ṁ
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radio optical

jet

Histogram of  shift positions / angles reveals: 

‣ 1000 simulations done with random  and  for 
various values of  . 

‣ Only a limited amount of  simulations have a detectable 
optical emission by Gaia and a non zero shift. 

‣ Distribution of  sources centred on ° with a tail 
that evolves with .   

Evolution of   for a fix  shows: 

‣ Impact of  gas / stellar distribution. For high , the 
offset converge to zero.  

‣  emerge in an average mass-loss rate 

between . 
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radio optical

jet

Histogram of  shift positions / angles reveals: 

‣ 1000 simulations done with random  and  for 
various values of  . 

‣ Only a limited amount of  simulations have a detectable 
optical emission by Gaia and a non zero shift. 

‣ Distribution of  sources centred on ° with a tail 
that evolves with .   

Evolution of   for a fix  shows: 

‣ Impact of  gas / stellar distribution. For high , the 
offset converge to zero.  

‣  emerge in an average mass-loss rate 

between . 
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Color magnitude and stellar population
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Ṁ [MØ · yr°1]

0.5

1.0

1.5

¢
m

je
t

( B
°

R
)

rc,s = 1.0 kpc

rc,s = 1.5 kpc

+ potential 
contribution 
from a stellar 
population. 

Accretion disks: Bluer optical objects are linked to 
the presence of  an accretion disk, and negative radio-
optical offset / redder objects correlate with a positive 
radio-optical offset (Plavin et al. 2019). 

Color magnitude: Larger positive  suggests a 
redder jet, which corresponds to low   corresponds 
to higher radio-optical offsets.  

Stellar population: The final  range corresponds 
to K/M-type stars which are commonly observed in 
elliptical galaxies (Ó Fionnagáin et al. 2020).  

This population might affect the radio-optical offset 
and color magnitude, potentially making jets appear 

redder and with larger offset.
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The mass-loading scenario: implications 

11

Observational biases: Doopler boosting plays a 
major role in regards of  the flux selection criteria.  

Source type: quasars tends to show near-to-zero offset, 
observed at low  and higher , while radio-galaxies 
and Seyfert at higher  and lower .  

Jet power: Based on optical observations, the offset 
appears as a unique tool to constraint the jet power.  

Gamma-ray emission:  Jet-star interactions are often 
listed to explain gamma-ray emission in jetted AGN 
(Torres et al. 2019) and in the production of  very-
energetic cosmic rays (Wykes et al. 2014). 
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Ṁ = 4.2 £ 10°11 MØ · yr°1
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Ṁ = 1.0 £ 10°11 MØ · yr°1
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Ṁ = 8.5 £ 10°12 MØ · yr°1
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Observational biases: Doopler boosting plays a 
major role in regards of  the flux selection criteria.  

Source type: quasars tends to show near-to-zero offset, 
observed at low  and higher , while radio-galaxies 
and Seyfert at higher  and lower .  

Jet power: Based on optical observations, the offset 
appears as a unique tool to constraint the jet power.  

Gamma-ray emission:  Jet-star interactions are often 
listed to explain gamma-ray emission in jetted AGN 
(Torres et al. 2019) and in the production of  very-
energetic cosmic rays (Wykes et al. 2014). 
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Jet dynamics and offsets: Mass-loading from stellar 
winds influences jet deceleration and creates radio-optical 
offsets; these offsets are useful for probing galaxy 
properties. 

Influence of  stellar populations: The presence and 
distribution of  K/M-type stars in host galaxies affect jet 
emissions and offsets, providing insights into the average 
stellar mass-loss rates. 

Observational implications: Offsets and jet emissions 
vary with redshift, observation angle, and jet power, which 
could inform future observational strategies to study AGN 
jets and their environments. 

Observational evidences: Promising qualitative 
comparison with work of  Plavin et al. 2019 underlines the 
powerful use of  radio-optical offset to study AGN. 
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could inform future observational strategies to study AGN 
jets and their environments. 

Observational evidences: Promising qualitative 
comparison with work of  Plavin et al. 2019 underlines the 
powerful use of  radio-optical offset to study AGN. 

Jet power: Study the presence and characteristics of  radio-
optical offsets for a range of  jet power.  

More refine set-up: inclusion of  radiative cooling, 
presence of  accretion disk, stellar population, etc.  

Direct comparison: Apply instrumental effects (Gaia 
angular resolution) to directly apply our model to a set of  
sources showing offsets.  

High-energy emission: derivation of  high and very-high 
energy emission in the light of  future observatories (CTA). 

Current status: Paper Jet-Star Interactions: 
Shedding Lights into Galaxy Properties 

submitted for publication.  
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