Absorbed jets in gamma-ray narrow-line Seyfert 1 Galaxies: the case of SDSS J164100.10+345452.7

P. Romano, S. Vercellone (INAF - OAB)

ABSTRACT

In the last 15 years narrow-line Seyfert 1 galaxies (NLS1) have been investigated mainly in the radio, optical, UV and X-ray energy bands. In 2008, the detection of PMN J0948+0022 by Fermi-LAT allowed us to extend their spectral energy distribution to the γ -ray energy band, paving the way to include γ -ray NLS1 galaxies into the class of extra-galactic jetted sources. Indeed, their properties place them at the low-power end of the flatspectrum radio quasar luminosity function, displaying low black-hole masses, accretion rates close to the Eddington limit, and low jet powers. Despite being considered radio silent, γ -ray NLS1s may present short and intense radio flares. We carried out an intensive multi-wavelength monitoring of SDSS J164100.10+345452.7 by means of the Metsähovi radio (37GHz) and Swift (Optical, UV, X-ray) observatories over a 2-year baseline with a weekly pace. Our campaign allowed us to obtain Swift data almost simultaneous with a radio flare. Detailed pre-, post-, and flare X-ray spectroscopy allowed us to discover a remarkable difference in the source spectrum in the distinct epochs, which permitted to establish the origin of the 37 GHz radio flare as the emergence of a jet from an obscuring neutral absorber detected in the X-ray observations. This result is the first detection of an absorbed jet in a γ -ray narrow-line Seyfert 1 galaxy.

Fig. 1. Multi-wavelength light curves of SDSS J164100.10+345452.7. The optical, UV, and X-ray light curves were collected by Swift from 2019-12-09 to 2020-08-17 (first year campaign), from 2021-01-31 to 2021-07-28 (second year), and are shown with 1 σ errorbars. The data at 37 GHz were collected at Metsähovi (<4 σ non-detections represented by crosses). The grey bands mark the Metsähovi detections. The top axis reports representative dates.

J164100.10+345452.7. The data are drawn from the whole 2 yr observing campaign (details on the spectral fits can be found in Table 1). Panel (a) best fit obtained by adopting the model tbabs * zpcfabs * zpowerlw; panel (b): data/model ratio from the fit with tbabs * zpowerlw in the 2–10 keV band; panel (c) data/model ratio from the fit with tbabs * ztbabs * zpowerlw (0.3-10 keV); panel (d) data/model ratio from the fit with tbabs * zpcfabs * zpowerlw (0.3-10 keV).

ξ	$2.4^{+2.5}_{-2.0}$	—	$\times 10^{-2}$
$F_{0.3-10}$	8.52	_	$\times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}$
χ^2 /d.o.f.	128.51/116	_	
nhp	0.201	—	
	tbabs * zxipcf	* zpowerl	w (0.3–10 keV)
$N_{\mathrm{H},z}$	$6.2^{+1.3}_{-1.8}$	—	$\times 10^{21} {\rm cm}^{-2}$
log <i>Ę</i>	$-0.63_{-1.07}^{+0.17}$	—	
f	$0.99^{+0.01p}_{-0.04}$	_	
$\Gamma_{0.3-10}$	$2.00 \pm +0.17$	—	
$F_{0.3-10}$	8.46	_	$\times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}$
χ^2 /d.o.f.	127.88/115	_	
nhp	0.194	_	

Parameter	Value	Units
$M_{ m BH}$	1.41	$ imes 10^7M_{\odot}$
$L_{\mathrm{H}eta}$	2.51	$\times 10^{41} \mathrm{erg s^{-}}$
L _{Edd}	1.8	$\times 10^{45} \mathrm{erg}\mathrm{s}^{-1}$
$L_{ m disc}$	6.8	$\times 10^{43}$ erg s ⁻
$L_{\rm disc}/L_{\rm Edd}$	0.04	_
$R_{\rm BLR}$	2.6	$\times 10^{16}$ cm
$L_{ m BLR}$	5.3	$\times 10^{42} \text{ erg s}^{-1}$
$u_{\rm BLR}$	0.02	$\mathrm{erg}\mathrm{cm}^{-3}$
$lpha_{ m 1.6-5.2GHz}$	1.04	—
$lpha_{5.2-9.0\mathrm{GHz}}$	1.24	—
$lpha_{9.0-37 m GHz}$	-4.92	_
$S_{ m 15GHz}$	4.33	mJy
$L_{15 m GHz}$	1.95	$\times 10^{40} \mathrm{erg}\mathrm{s}^{-1}$
$P_{\text{iet}}^{\text{rad}}$	1.65	$\times 10^{42} \text{ erg s}^{-1}$
\boldsymbol{P}^{kin}	1 83	$\times 10^{42} {\rm erg s^{-1}}$

DISCUSSION

SDSS J164100.10+345452.7 is a nearby γ -ray NLS1 (z = 0.16409), hosted in a spiral galaxy, initially classified as radio-quiet and then detected at 37 GHz with F = 0.46 and at E>100 MeV with F = (12.5 ± 2.18) x 10⁻⁹ ph cm⁻² s⁻¹ (Lähteenmäki et al. 2018). Given this hint for the presence of a jet, we performed a monitoring with Swift simultaneously with radio observations at Metsähovi.

The Swift data were collected through two yearly monitoring campaigns (Target ID 11395, PI: P. Romano) with a pace of one $\sim 2-3$ ks observation per week from 2019-12-09 to 2020-08-17 (97 ks) and from 2021-01-31 to 2021-07-28 (68 ks) with the Swift/X-ray Telescope (XRT) and the Swift/UV/Optical Telescope (UVOT), as shown in Fig. 1.

Fig. 2 shows the average XRT spectrum (~181 ks), that can be described well by an absorbed powerlaw model with a photon index Γ = 1.93±0.12 but requires a partially covering neutral absorber (Fig. 2) d: tbabs * zpcfabs * zpowerlw) with a covering fraction $f = 0.91 \pm 0.02$ (the details of the spectral fits are in Table 1). On the contrary, the flare spectrum (MJD 58994–58997, ~3.5 ks) does not require any such extra absorber and is much harder ($\Gamma_{\text{flare}} \sim 0.7 \pm 0.4$), thus implying the emergence of a further harder spectral component. We interpret this as the jet emission emerging from a gap in the absorber.

Overall, the spectral energy distribution (SED), although not well constrained at the high energies due to the lack of simultaneous Fermi/LAT data, does show a resemblance to the SEDs of jetted sources, with hints at the presence of two humps. The SED of J1641 is reminiscent of other γ -ray NLS1 galaxies with a synchrotron peak below 10¹³ Hz, a host galaxy component peaking at a few 10¹⁴ Hz, and the X-ray data which could be modelled with a synchrotron self-Compton component (Foschini et al. 2015). Assuming that the radio emission is due to a jet, then we can calculate its power, log(P_{tot} jet) \simeq 42.54 erg s⁻¹, which is one of the lowest measured when compared with the Foschini et al. (2015) sample, and reminiscent of the γ -ray NLS1 J0706+3901. The overall properties of SDSS J164100.10+345452.7 are summarised in Table 2.

ACKNOWLEDGEMENTS

We acknowledge financial contributions of the Next Generation EU funds within the National Recovery and Resilience Plan (PNRR), Mission 4 - Education and Research, Component 2 - From Research to Business (M4C2), Investment Line 3.1 - Strengthening and creation of Research Infrastructures, Project IR0000012 – "CTA+ - Cherenkov Telescope Array Plus".

References: Foschini et al. 2015, A&A 575 A13; Lähteenmäki et al., 2018, A&A, 614, L1; **Romano et al., 2023, A&A 673, A85**