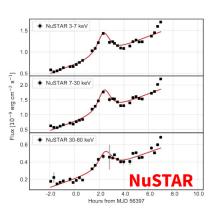
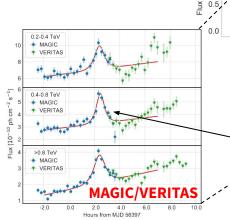


The Mrk 421 2013 outburst

- Mrk 421: bright & nearby (z~0.03)
 BL Lac object
- Flare in April 2013
 - ~15x Crab Nebula flux at very-high-energy
 - ~40 hrs of simultaneous X-ray/VHE coverage (Swift-XRT/NuSTAR/MAGIC/VERITAS)

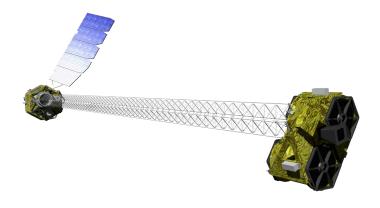


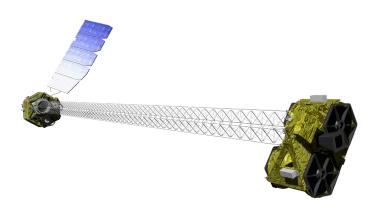

Acciari al., 2020, ApJS, 248, 29


The Mrk 421 2013 outburst

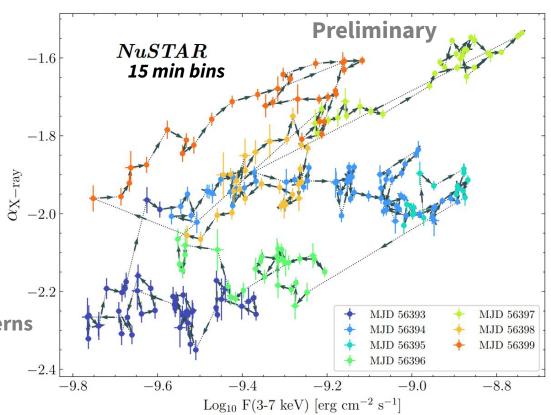
Mrk 421: bright & nearby (z~0.03)
 BL Lac object

- Flare in April 2013
 - ~15x Crab Nebula flux at very-high-energy
 - ~40 hrs of simultaneous X-ray/VHE coverage (Swift-XRT/NuSTAR/MAGIC/VERITAS)
- Tight VHE/X-ray correlation



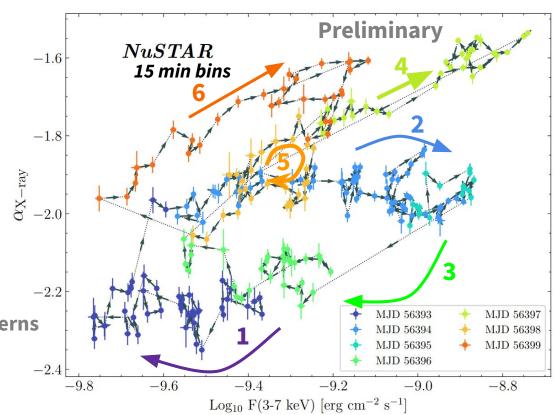

Fast variability features in light curves (15min flux doubling/halving time)

Re-analyzed NuSTAR & MAGIC data

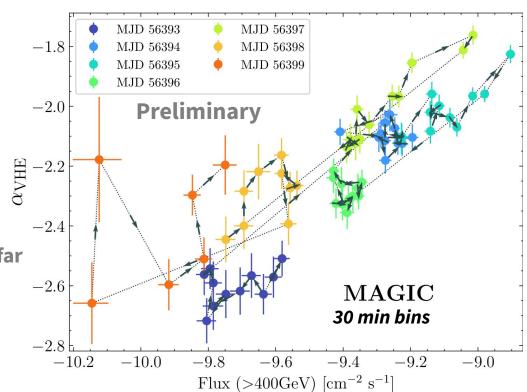

- Re-analyzed NuSTAR & MAGIC data
- NuSTAR spectral parameters resolved down to 15 min timescale

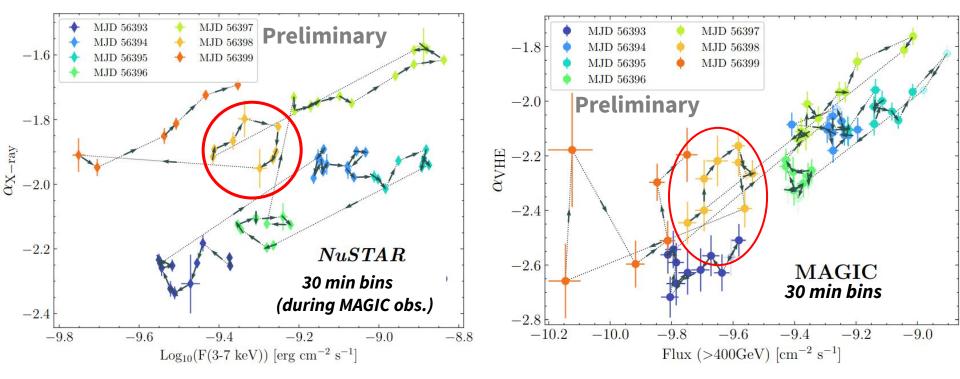
- Re-analyzed NuSTAR & MAGIC data
- NuSTAR spectral parameters resolved down to 15 min timescale
- Fitted with a **log-parabola** with fixed curvature (β = 0.38, E₀=1 keV)

$$\frac{dN}{dE} = f_0 \left(\frac{E}{E_0}\right)^{\alpha - \beta \log_{10} \left(\frac{E}{E_0}\right)}$$


- Strong variability, with complex patterns
 - Indication of hysteresis loops in clockwise directions

- Re-analyzed NuSTAR & MAGIC data
- NuSTAR spectral parameters resolved down to 15 min timescale
- Fitted with a **log-parabola** with fixed curvature (β = 0.38, E₀=1 keV)


$$\frac{dN}{dE} = f_0 \left(\frac{E}{E_0}\right)^{\alpha - \beta \log_{10} \left(\frac{E}{E_0}\right)}$$


- Strong variability, with complex patterns
 - Indication of hysteresis loops in clockwise directions

- MAGIC spectral evolution resolved in 30 min bins
- MAGIC spectra fitted with a **log-parabola** with fixed curvature (β = 0.4, E₀=0.5 TeV)

 Variability goes beyond the "simple" harder-when-brighter trend reported so far at VHE

MAGIC & NuSTAR spectra follow very similar patterns

- → Evidence of simultaneous VHE / X-ray hysteresis pattern (e.g. MJD 56398)
- → Strong prediction of leptonic models

AIM: Model the broadband variation in a time-dependent approach throughout the entire flare

- → Keep track of the particle distribution history (improvement with respect to most of the literature that uses stationary models to fit observations)
 - → We will focus on describing the complex VHE/X-ray spectral variations
 - → Modelling is performed over the 9 days of the flare, on 15min timescale

Leptonic model 2-zones (spatially separated)

"Slow" zone

UV/optical & MeV/GeV

Parameters vary on daily timescale

(motivated by ~daily variability from optical & Fermi-LAT observations) "Fast" zone

X-ray & VHE

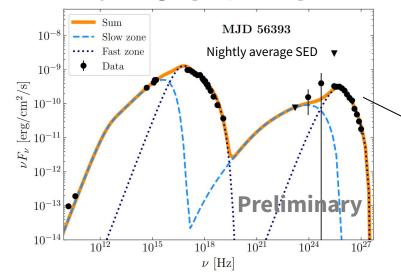
Parameters vary down to 15 min timescale

Leptonic model 2-zones (spatially separated)

"Slow" zone

UV/optical & MeV/GeV

Parameters vary on daily timescale


(motivated by ~daily variability from optical & Fermi-LAT observations)

- Doppler factor = 50
- $R = 10^{16} \text{ cm}$
- B = 0.07 G
- Parameters of electron distribution left free & evolve on daily timescale

Not a unique solution

Leptonic model 2-zones (spatially separated)

A) Find a baseline model for each day before modeling the variations on shorter timescales. We **determine B and Doppler factor** by fitting **nightly averaged SEDs** (R fixed to 10¹⁵ cm)

Doppler factor fixed to 100 required to fit VHE data!

B varies moderately, factor ~2 between the days

"Fast" zone

X-ray & VHE

Parameters vary down to 15 min timescale

Leptonic model 2-zones (spatially separated)

B) Then, we evolve **luminosity & slope** (*p*) of **injected** electrons on 15 min to **reproduce X-ray & VHE variability**

$$\frac{dN}{d\gamma} \propto \begin{cases} \gamma^{-p}, & \gamma_{\min} < \gamma < \gamma_{\max} \\ \gamma^{-p} \exp\left(-(\gamma/\gamma_{\max})^{a}\right), & \gamma > \gamma_{\max} \end{cases}$$

with a = 2, provides the best description of measured spectra & fluxes

"Fast" zone

X-ray & VHE

Parameters vary down to 15 min timescale

Leptonic model 2-zones (spatially separated)

- B) Then, we evolve **luminosity & slope** (*p*) of **injected** electrons on 15 min to **reproduce X-ray & VHE variability**
 - **p** constrained directly using NuSTAR fit on 15 min scale
 - Luminosity (l_e) varied assuming linear dependence on 3-7 keV flux

$$l_e(t) = l_{e,0} \times \left(\frac{F_{3-7\text{keV}}(t)}{F_{3-7\text{keV},0}}\right)$$

"Fast" zone

X-ray & VHE

Parameters vary down to 15 min timescale

"Slow" zone

UV/optical & MeV/GeV

Parameters vary on daily timescale

(motivated by ~daily variability from optical & Fermi-LAT observations) Leptonic model 2-zones (spatially separated)

Solve kinetic equations assuming radiation cooling and escape, t_{esc}= R/c

Using the leptonic module of ATHEVA (*Dimitrakoudis+ 2012* and *Polkas+ 2021*

"Fast" zone

X-ray & VHE

Parameters vary down to 15 min timescale

Leptonic model 2-zones (spatially separated)

"Slow" zone

UV/optical & MeV/GeV

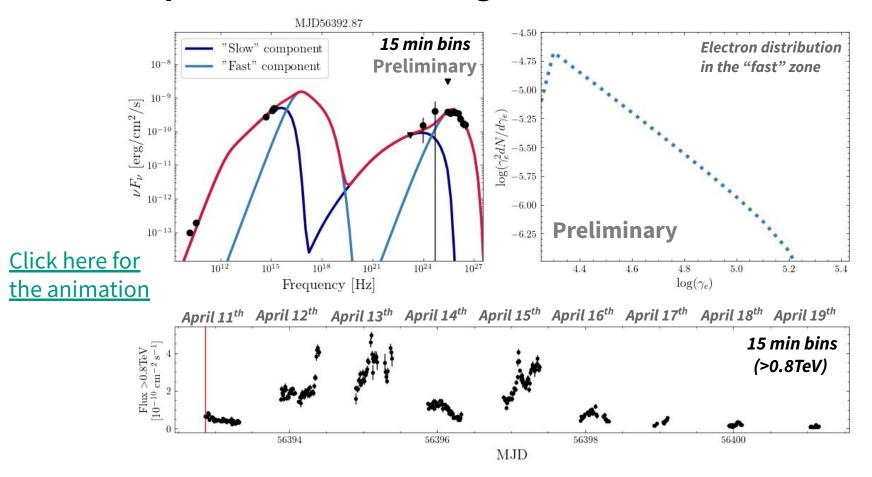
Parameters vary on daily timescale

(motivated by ~daily variability from optical & Fermi-LAT observations)

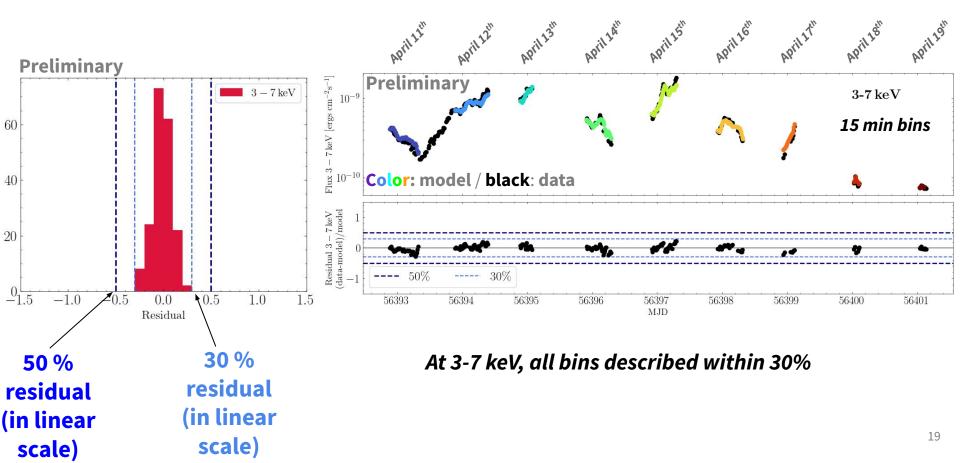
Loss terms

$$\frac{\partial n_e}{\partial t} + \frac{n_e}{t_{\rm e,esc}} + L_e^{\rm IC} + L_e^{\rm syn} = Q_e^{\rm inj} + Q_e^{\gamma\gamma}$$

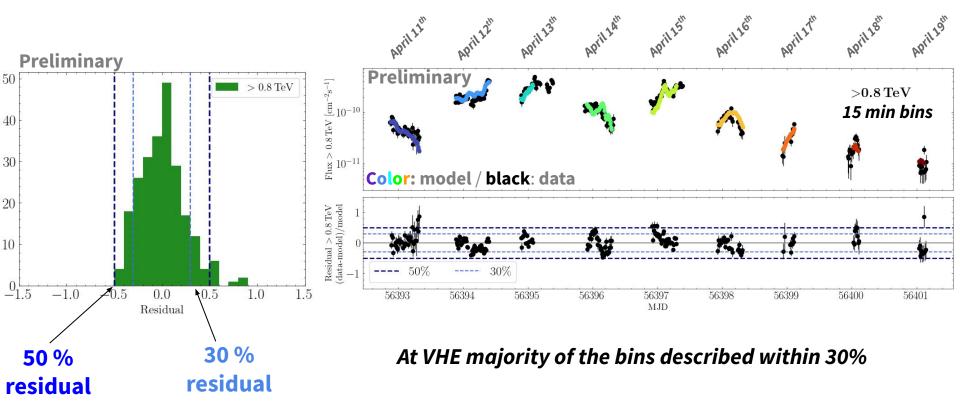
$$\frac{\partial n_{\gamma}}{\partial t} + \frac{n_{\gamma}}{t_{\gamma, \text{esc}}} + L_{\gamma}^{\text{ssa}} + L_{\gamma}^{\gamma\gamma} = Q_{\gamma}^{\text{syn}} + Q_{\gamma}^{\text{IC}}$$

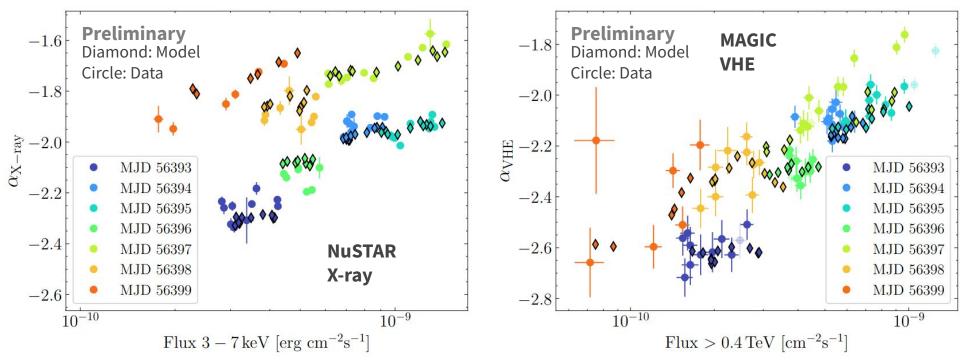

Injection terms

$$t_{\rm e,esc} = t_{\gamma,\rm esc} = R/c$$

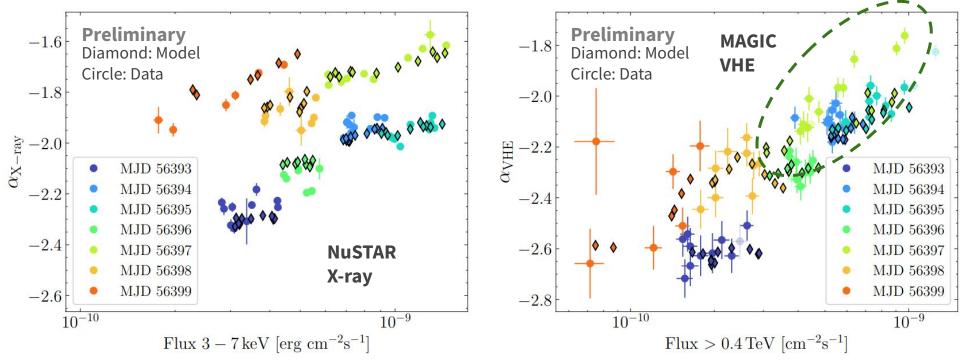

"Fast" zone

X-ray & VHE

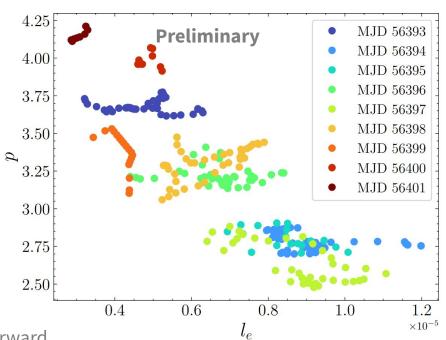

Parameters vary down to 15 min timescale



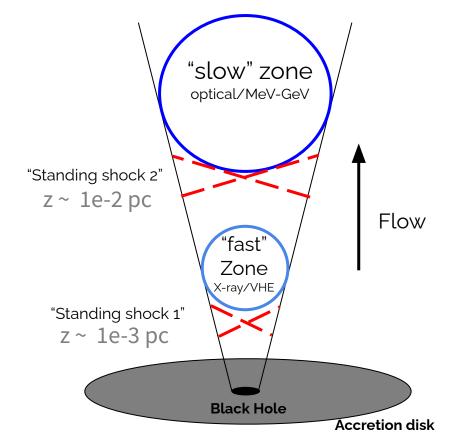
Time-dependent modelling - results: X-ray fluxes



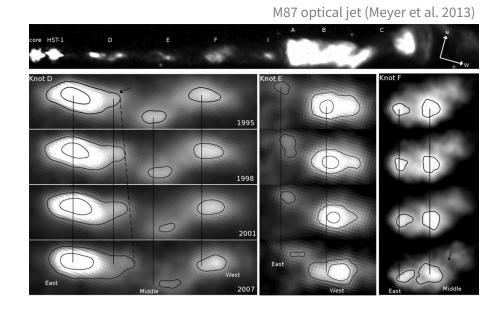
Time-dependent modelling - results: VHE fluxes


Spectral index reproduced within ~10% in most of the cases

Spectral index reproduced within ~10% in most of the cases


A systematic difference at VHE on MJD 56397 for the highest fluxes → Appearance of emitting zones with Doppler >100 (or extra component)?

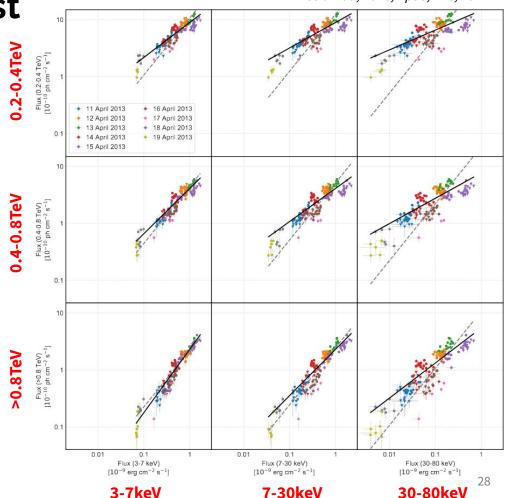
- Injected index (p) vs. luminosity (l_e)
 - harder at higher luminosity
- If accelerated via magnetic reconnection,
 change in magnetization may explain Δp ~ 1.5
 (see e.g. PIC simulations from
 L. Sironi and A. Spitkovsky 2014)
 p>2.5 imply magnetization <= 3 w/o guide field (Werner+2016)</p>
 Steeper slopes possible with stronger guide field (Werner+Uzdensky 2017)
- If accelerated via shock (DSA),
 change in compression ratio may
 explain changes in p
 (Kirk et al. 2000, Virtanen et al. 2005)
- In both scenarios, **p** and **l** correlation is not straightforward


Time-dependent modelling - note on Doppler=100

- We found Doppler = 100 in "fast" zone
 - ⇒ displacement ~ δ^2 * c * Δt_{obs} ~ 10 pc / day, if emitting region moving downstream with δ ⇒ contradicts stability of R (constant) and B (varies by factor ~2) in our model
- Suggest that emitting region is fixed in jet's frame (e.g. recollimation shock)
 (Hervet et al. 2019, Daly & Marscher 1988)

Time-dependent modelling - note on Doppler=100

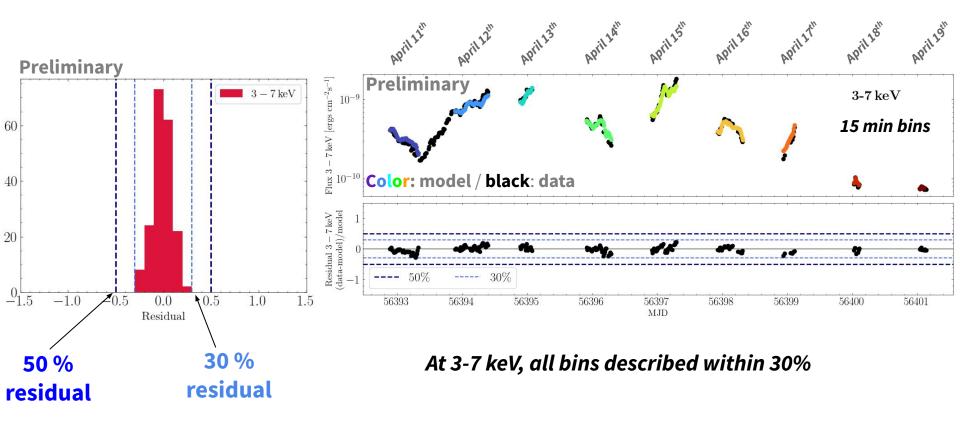
- We found Doppler = 100 in "fast" zone
 - ⇒ displacement ~ δ^2 * c * Δt_{obs} ~ 10 pc / day, if emitting region moving downstream with δ ⇒ contradicts stability of R (constant) and B (varies by factor ~2) in our model
- Suggest that emitting region is fixed in jet's frame (e.g. recollimation shock)
 (Hervet et al. 2019, Daly & Marscher 1988)

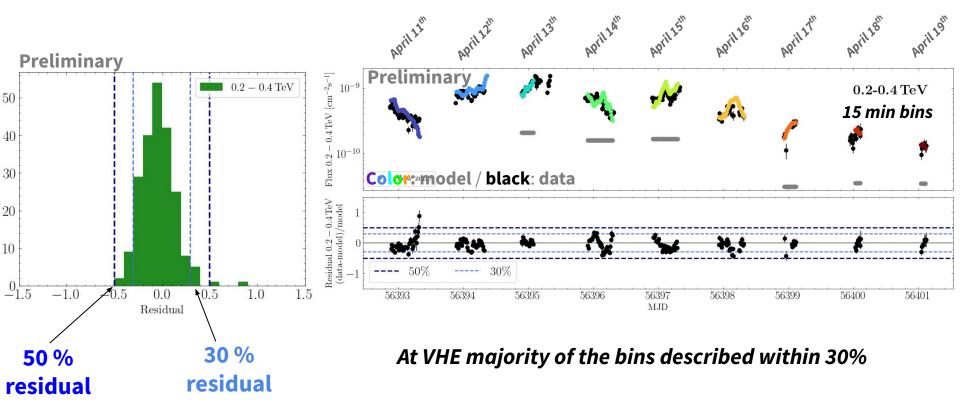

Conclusions

- Major outburst in April 2013 of Mrk 421
 - observed over 9 days with ~40 hrs of VHE / X-ray simultaneous data
 - Spectral & flux variability on sub-hour scale
- Spectral analysis of MAGIC and NuSTAR data during April 2013 flare
 - High degree of complexity in the spectral evolution
 - Evidence of simultaneous VHE/X-ray spectral hysteresis
- Time-dependent modelling of the flare, on 15min timescale
 - **Evolution of electron luminosity & hardness** describes most of VHE/X-ray sub-hour variations
 - Doppler factor ~ 100, required to capture VHE hardness
 - \circ $\Delta p \sim 1.5$ implies change in plasma magnetization or guide field strength (magnetic reconnection) or change in shock compression ratio (DSA)

Back up

The Mrk 421 2013 outburst


- Mrk 421: bright & nearby (z~0.03)
 BL Lac object
- Flare in April 2013
 - ~15x Crab Nebula flux at very-high-energy
 - ~40 hrs of simultaneous X-ray/VHE coverage (Swift-XRT/NuSTAR/MAGIC/VERITAS)
- Tight X-ray vs. VHE correlation
 - Correlation slope is energy dependent


Time-dependent modelling - "stationary states" parameters

Day	$\log_{10}(l_e) + 5$	p	$\log_{10}(\gamma_{\min})$	$\log_{10}(\gamma_{\mathrm{max}})$	B [G]	$R [10^{16} \text{cm}]$
"Slow" zone				$\delta = 50$		
56393	0.15	2.0	2.5	4.5	0.07	1
56394	0.15	2.0	2.5	4.5	0.07	1
56395	0.10	2.0	2.5	4.7	0.07	1
56396	0.05	2.0	2.5	4.7	0.07	1
56397	0.60	2.0	2.5	4.6	0.07	0.5
56398	-0.05	2.0	2.5	4.7	0.07	1
56399	0.05	2.0	2.5	4.6	0.07	1
56400	0.05	2.0	2.5	4.6	0.07	1
56401	-0.05	2.0	2.5	4.6	0.07	1
"Fast" zone				$\delta = 100$		
56393	-0.3	3.63	4.2	5.2	0.160	0.122
56394	-0.1	2.94	4.3	5.3	0.100	0.122
56395	-0.05	2.82	4.3	5.3	0.110	0.122
56396	-0.1	3.20	4.3	5.3	0.100	0.122
56397	-0.1	2.61	4.2	5.4	0.100	0.122
56398	-0.3	3.11	4.2	5.4	0.120	0.122
56399	-0.45	3.35	4.2	5.5	0.130	0.122
56400	-0.3	3.96	4.3	5.4	0.086	0.122
56401	-0.55	3.96	4.3	5.3	0.110	0.122

Time-dependent modelling - results : X-ray fluxes

Time-dependent modelling - results: VHE fluxes

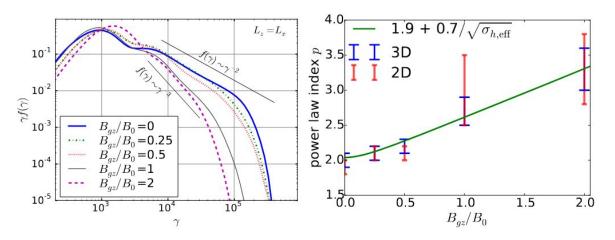


Figure 4. (Left) Strong B_{gz} hinders particle acceleration, as shown by the particle spectra from simulations with $L_z = L_x$ and varying B_{gz} . (Right) The spectral slopes are similar in 2D and 3D, but steepen significantly with strong guide field [Eq. (2)]. The range of p indicates variation within a single simulation.

Werner+Uzdensky 2017