Investigating hadronic PeVatrons with X-ray and CO observations

8th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy Università di Milano September 2-6, 2024

Naomi Tsuji (Kanagawa University)

Hadronic gamma-ray emission

[this talk] search for secondary synchrotron emission (X-ray observation) and molecular clouds (CO observation)

HESS J1641-463

- Unidentified, extended TeV gamma-ray source on the Galactic plane
- Hard TeV gamma-ray spectrum (Γ =2.07) $\rightarrow E_{p,c} > 100 \text{ TeV} \rightarrow PeVatron candidate!$
- Coincides with a radio SNR, G338.5+0.1
- X-ray domain has been unexplored

2024-09-05 | Gamma 2024 | Università di Milano

Naomi Tsuji (Kanagawa U)

X-ray observation and image

- Analyzed new NuSTAR data (80 ks) and archival Chandra data (60 ks in total)
- No significant X-ray emission from HESS J1641

X-ray spectrum of HESS J1641

- Fitting model: absorbed power law
 - $N_{\rm H} = 2 \times 10^{22} \text{ cm}^{-2}$ and $\Gamma = 2$ (fix)

Size

 $(\operatorname{arcmin}^2)$

18.1

28.3

22.8

2σ flux upper limit

NuSTAR

Chandra (12508)

Chandra (11008) 15.35

- (6-7)x10⁻¹³ erg/cm²/s in 2-10 keV •
- ~3 x10⁻¹³ erg/cm²/s in 10–20 keV
- Roughly consistent with Mares+ 2021 ٠

Detector

FPMA

FPMB

ACIS-S (BI)

ACIS-I

4.0

7.1

5.1

1.5

Modeling

Tsuji et al 2024 ApJ 967 138

Synchrotron X-ray from secondary e[±] in pp interaction

• X-ray upper limits (this work) cannot place tight constraint

• X-ray emission, if detected, might be able to determine $E_{max, p}$

Detectability of 2nd electrons

Cygnus cocoon/OB2

- >PeV emission
 - ~6 deg bubble and ~0.3 deg core (including OB2 and Cyg X-3)
 - Hadronic origin → 2nd synchrotron depends on only B-field
- Thermal diffuse emission (kT= 0.1–1 keV) from OB2 region

Detectability of 2nd electrons

SNR RX J1713.7-3946

- South region
 - ~5x5 arcmin² (HESS Collab. 2018)
 - Hadronic fraction >70% (Fukui+ 2021)
 - Primary synchrotron component is dominant

Many X-ray "hotspots" in NW shell: cores of molecular clouds?

• ~5 arcsec in radius

10m

- 2nd synchrotron component ($\sim 10^{-14}$ cgs)
- Angular resolution should be <15 arcsec
 - Otherwise, 1st synchrotron dominates

RA (J2000

H.E.S.S. (2015) RX [1713.7-3946, E > 2 TeV

-39°00'

Detectability of secondary electrons

Future prospect

- What is the best target?
 - Hard TeV gamma-ray spectrum and low thermal/synchrotron X-ray flux

	Example	Size	Notes
1. UnID gamma-ray source	HESS J1641-463	3 arcmin	riangle Needs deep observation
2. Star forming region	Cygnus bubble	~6 deg	× Too largely extended
2. Star forming region	Cygnus OB2	~0.3 deg	O Detectable at >10 keV
	RX J1713's diffuse	~5 arcmin	× 1st synchrotron dominant
J. JINK	RX J1713's hotspot	~5 arcsec	O Requires <15" resolution

Detectable by future hard X-ray telescope with good angular resolution (e.g., HEX-P)

Search for molecular clouds in LHAASO J0341 + 5258

- LHAASO J0341+5258
 - Extended, unidentified source up to >100 TeV
 - E_{max} ~ 200 TeV (Cao+ 2021; Kar and Gupta 2022)

Namo	Size (deg)		Г	
INAILIE	KM2A	WCDA	KM2A	WCDA
LHAASO J0341+5258	0.29		2.98	_
1LHAASO J0339+5307	<0.22	—	3.64	—
1LHAASO J0343+5254u	0.20	0.33	3.53	1.70

Discussion

Counterparts

- * X-ray: 4 ROSAT sources (Boller et al. 2016)
- Pulsar: PSR J0343+5312
 - GeV: 4FGL J0340.4+5302

Extended X-ray emission in new XMM data in 2024 (Shuo Zhang et al.)

Nobeyama ¹²CO image (-40 to 10 km/s)

Summary

- X-rays (secondary synchrotron radiation) and molecular clouds could be probes of hadronic gamma rays
- Synchrotron emission from secondary electrons
 - Tested in HESS J1641-463, Cygnus cocoon/OB2, SNR RX J1713.7-3946
 - Future hard X-ray telescope might be able to detect the emission
- Molecular cloud search in LHAASO J0341+5258
 - ~30 hr observations by Nobeyama Radio Observatory
 - Most of detected clouds are nearby (<1 kpc), small (~1 pc), and light (5–300 M_{sun})

Future plan

Ongoing analysis of XMM data and scheduled Nobeyama CO observations on 6 sources below

Source name	X-ray	СО	Collaboration with	
LHAASO J0341+5258	XMM in 2024	Nobeyama in 2024 (this talk)	K. Mori, S. Takekawa,	
LHAASO J2108+5157	XMM in 2023	De la Fuente+ 2023	A. Mitchell, S. Zhang, P. Bangale, J. Gelfand, J. Alford, J. Woo, S. Safi-Harb, I. Sander, L. Olivera-Nieto, and	
1LHAASO J0500+4454	—	Nobeyama in 2025		
1LHAASO J0622+3754	XMM in 2024	Nobeyama in 2025		
1LHAASO J1956+2921	XMM in 2024	Nobeyama in 2024–2025		
V4641 Sgr		Nobeyama in 2024	E. de la Fuente,	