

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Towards a TeV blazar sequence and its physical interpretation

I. Viale, E. Prandini, C. Righi, F. Bovolon, N. Sahakyan

Ilaria Viale

Gamma 2024

Milano, 2 - 6 Sep 2024

Original sequence: Fossati et al. (1998)

- 126 sources from X-ray and radio samples
- Radio luminosity bins

Original sequence: Fossati et al. (1998)

- 126 sources from X-ray and radio samples
- Radio luminosity bins

Main results:

- Anti-correlation between total luminosity and peak frequencies
- Correlation between peak frequencies of bumps
- Increase of Compton dominance with total luminosity

nd peak frequencies umps luminosity

Original sequence: Fossati et al. (1998)

- 126 sources from X-ray and radio samples
- Radio luminosity bins

Sequence 2.0: <u>Ghisellini et al. (2017)</u>

- 747 sources from 3LAC Fermi catalog
- γ-ray luminosity bins

Main results:

- Anti-correlation between total luminosity and peak frequencies
- Correlation between peak frequencies of bumps
- Increase of Compton dominance with total luminosity

nd peak frequencies umps

Original sequence: Fossati et al. (1998)

- 126 sources from X-ray and radio samples
- Radio luminosity bins

Sequence 2.0: <u>Ghisellini et al. (2017)</u>

- 747 sources from 3LAC Fermi catalog
- γ -ray luminosity bins

Main results:

- Anti-correlation between total luminosity and peak frequencies
- Correlation between peak frequencies of bumps
- Increase of Compton dominance with total luminosity

with luminosity

First studies of a TeV blazar sequence

TeV-detected sources and the sequence: Prandini & Ghisellini (2022)

- 81 TeV blazars from TeVCat (at Jan 2022)
- Same luminosity bins as in 2017 sequence
- No strong differences in SED wrt Fermi blazars
- Larger X-ray luminosity than in Fermi blazars

Quiescent vs flaring activity in TeV blazars: Ouyang et al. (2023)

- 48 sources in quiescent state, 21 in flaring state
- \bullet Anti-correlation between luminosity and ν_{syn} present only during flares

Which is the role of TeV sources in the blazar sequence?

This work

Goal

Is the blazar sequence physically driven?

Which is the role of TeV sources in the blazar sequence?

Concentrated only on TeV BL Lac sources

This work

Goal

Is the blazar sequence physically driven?

parameters?

- 84 TeV-detected blazars at TeVCat to date, data from 4LAC-DR2 • Concentrate only on BL Lacs with known redshift \rightarrow total of 56 sources
- ν_{syn} bins used instead of luminosity bins
- Selection of one representative source for each bin

Our sample

- 84 TeV-detected blazars at TeVCat to date, data from 4LAC-DR2 • Concentrate only on BL Lacs with known redshift \rightarrow total of 56 sources
- ν_{syn} bins used instead of luminosity bins
- Selection of one representative source for each bin

Our sample

Our sample

18 sources

13 sources PKS 0548-322

Data selection

Selection done source-wise

For each selected source:

- Data retrieved from MMDC + STeVECat <u>Sahakyan et al. (2024), in prep.</u> <u>Grèaux et al. (2023)</u>
- Average state of activity

Data selection

Selection done source-wise

For each selected source:

- Data retrieved from MMDC + STeVECat Sahakyan et al. (2024), in prep. Grèaux et al. (2023)
- Average state of activity
- Large spread in X-ray data
- Two selections:
 - Single observations
 - Average data from catalog OUSXB Giommi et al. (2019)

Selected sources modeled with Synchrotron Self Compton model • Aim of finding trend in model parameters describing the sequence

Concentrated only on HBL as starting point, $\nu_{syn} > 1 \times 10^{15}$ Hz

• Difficult to describe sources with lower ν_{syn} with pure SSC

Modeling software based on **Convolutional Neural Network: Béqué et al. (2023)**

- Allows to scan the whole parameter space
- Available through MMDC platform

Model

		DO 1010.004	
	PK5 2155-304	PG 1218+304	PK5 0548-322
t_var [s]	4.86E+04	8.57E+04	1.05E+04
p1	2.34	2.1	2.16
log(L_e [erg/s])	44.77	44.48	43.39
log(γ_max)	5.28	5.66	5.79
δ	43.06	29.71	49.25
log(B [G])	-1.51	-1.61	-1.6
10^{-9} 10^{-10} 10^{-10} 10^{-11} 10^{-12} 10^{-13} 10^{-14} 10^{9}		PKS 054	8-322 10 ²⁷ 10 ³⁰
	$v_{\sf ob}$	_s [Hz]	

30	
_	
30	

	PKS 2155-304	PG 1218+304	PKS 0548-322
t_var [s]	4.86E+04	8.57E+04	1.05E+04
p1	2.34	2.1	2.16
log(L_e [erg/s])	44.77	44.48	43.39
log(γ_max)	5.28	5.66	5.79
δ	43.06	29.71	49.25
log(B [G])	-1.51	-1.61	-1.6
10^{-9} 10^{-10} 10^{-10} 10^{-11} 10^{-12} 10^{-13} 10^{-14} 10^{9}		PKS 054	B-322
10 ⁹	10^{12} 10^{15} 10^{18}	10 ²¹ 10 ²⁴	10 ²⁷ 10 ³⁰

9

30	
_	
30	

Comparison of X-ray selections for

PKS 2155-304

	Single obs.	Average
t_var [s]	4.86e4	4.88e5
p1	2.34	2.24
log(L_e [erg/s])	44.77	44.9
log(γ_max)	5.28	5.45
δ	43.06	21.47
log(B [G])	-1.51	-1.7

Comparison of X-ray selections for

PKS 2155-304

	Single obs.	Average
t_var [s]	4.86e4	4.88e5
p1	2.34	2.24
log(L_e [erg/s])	44.77	44.9
log(γ_max)	5.28	5.45
δ	43.06	21.47
log(B [G])	-1.51	-1.7

Take home messages and outlook

- Investigation of role of TeV sources in the blazar sequence
- Non-trivial data selection, especially in X-rays:
 - Useful in the future...
 - Continuous monitoring of sources in X-rays
 - Obs. strategy of simultaneous X-ray and y-ray data
 - Online tools filtering observations based on the obs. Period
- Doppler factor not well constrained in tested models
 - Work in progress: investigation of different δ values for each source and interpretation of modeling results
- Aim of modeling larger number of TeV sources to check parameter trends

Take home messages and outlook

- Investigation of role of TeV sources in the blazar sequence
- Non-trivial data selection, especially in X-rays:
 - Useful in the future...
 - Continuous monitoring of sources in X-rays
 - Obs. strategy of simultaneous X-ray and y-ray data
 - Online tools filtering observations based on the obs. Period
- Doppler factor not well constrained in tested models
 - Work in progress: investigation of different δ values for each source and interpretation of modeling results
- Aim of modeling larger number of TeV sources to check parameter trends

Stay tuned for new results!

Thank you!