

 \bullet \bullet

 \circ \circ

 \circ \circ

 \bullet \bullet

 \circ \circ

 \circ \circ

Jieshuang Wang Max Planck Institute for Plasma Physics (IPP)

\bullet o o o

Ack: Brian Reville (MPIK), Zigao Dai (USTC), Frank Rieger (IPP), Felix Aharonian (DIAS & MPIK), Yosuke Mizuno (SJTU)

Particle acceleration and high-energy emission in AGN jets: M87 and Cen A

Quasi-continuous radiation along the jet

EHT MWL Science Working Group, 2021, ApJL 2 *Hardcastle+, 2003, ApJ*

- M87: multi-wavelength observation resolving sub-pc and kpc scales
- ‣ Cen A: most nearby radio galaxies, radio to TeV observations on kpc-scale jets

Fermi II acceleratio Shear acceleration Continuous particle acceleration Sheat Spine (e.g. knots, hotspots) and add to the

- ‣ Continuous particle acceleration offers a natural explanation to continuous emission
- In turbulent jet flows, continuous acceleration by Fermi II mechanism
- In spine-sheath flows, continuous acceleration by shear acceleration
- ‣ Shock and magnetic reconnection in highly magnetized regions can produce more localized features turbulence development

Fermi-II mechanism

- ‣ Average energy gain in each collision by scattering MHD waves $(u = v_A = B/\sqrt{4\pi\rho})$ $\frac{\langle \Delta \epsilon \rangle}{\gamma} \propto \left(\frac{u}{\gamma}\right)^2$
- \blacktriangleright Scattering time: $\tau_{\text{sc}} \propto \epsilon^{2-q}$ (turbulence index q)
- ‣ Acceleration time: τ _{FermiII} = *ϵ* $<\Delta \epsilon$ *τsc*

Shear acceleration

‣ Average energy gain in each collision by scattering MHD waves $(u = v_A = B/\sqrt{4\pi\rho})$ $\frac{\langle \Delta \epsilon \rangle}{\gamma} \propto \left(\frac{u}{\epsilon}\right)^2$

 \blacktriangleright Scattering time: $\tau_{\text{sc}} \propto \epsilon^{2-q}$ (turbulence index q)

 $<\Delta \epsilon$

- ‣ Shear is also stochastic-type
- ‣ Turbulences are embedded in velocity-shearing layers (spinesheath)
- ‣ Particles scattering off turbulence will sample the velocity difference

‣ Acceleration time: *ϵ*

*τ*FermiII =

Berezhko & Krymsky 1981; Berezhko 1982; Earl+ 1988; Webb 1989; Jokipii & Morfill 1990; Webb+ 1994; Rieger & Duffy 2004, 2006, 2016; Liu+ 2017; Webb+ 2018, 2019; Lemoine 2019; Rieger & Duffy 2019, 2021, 2022

τsc

High velocity flow

Low velocity flow

Analytical solution for Stochastic-type acceleration

‣ Fokker–Planck description for particle spectrum (steady state)

$$
\frac{\partial n(\gamma, t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial \gamma} \left[\left\langle \frac{\Delta \gamma^2}{\Delta t} \right\rangle \frac{\partial n(\gamma, t)}{\partial \gamma} \right] - \frac{\partial}{\partial \gamma} \left[\left\langle \left\langle \frac{\Delta \gamma}{\Delta t} \right\rangle - \frac{1}{2} \frac{\partial}{\partial \gamma} \left\langle \frac{\Delta \gamma^2}{\Delta t} \right\rangle + \left\langle \dot{\gamma}_c \right\rangle \right] \times n(\gamma, t) \right] - \frac{n}{t_{\rm esc}} + Q(\gamma, t)
$$

‣ Cutoff power-law spectrum for both mechanism: turbulence, magnetic field

(B), jet velocity (v) and profile

Fermi II: $N(\gamma') \propto \gamma^{-p}$ $exp[-(\frac{\gamma'}{\gamma})]$

Cutoff frequency: $\nu'_{\text{cut,Fermi–II}} = 2.9 \times 10^4 \beta_{A,-1}^3 \zeta_{-2}^{3/2} B_{-1}^{-.3/2} R_{-2}^{-1} \text{ GHz}$

J.S.Wang+, 2021, [arXiv:2105.08600](https://ui.adsabs.harvard.edu/link_gateway/2021MNRAS.505.1334W/arxiv:2105.08600), 2024, arXiv:2404.08625

Shear: *n*(*γ*′) ∝ *γ* ′*s*−*F*−(*γ*′ , *q*) + *Cγ*

Cutoff frequency: $\nu'_{\text{cut,sh}} = 2.4 \times 10^9 w_{-1}^{-3}$

$$
\frac{\gamma'}{\gamma'_{\text{cut,Fermi-II}}}
$$
\n
$$
\frac{\gamma'_{\text{cut,Fermi-II}}}{\gamma_{\text{cut,Fermi-II}}} = q - 1
$$
\n
$$
\frac{9 \times 10^4 \beta_{A,-1}^3 \zeta_{-2}^{3/2} B_{-1}^{-3/2} R_{-2}^{-1} \text{ GHz}}{9 \sqrt{1 - \frac{9}{2} \gamma_{-1}^2 (\gamma_{-1}^2) A_{-2}^{-1}}} = \frac{q - 1}{2} \pm \sqrt{\frac{(5 - q)^2}{4} + w}
$$
\n
$$
0^9 w_{-1}^{-3} \zeta_{-2}^{-3} B_{-1}^{-6} R_{-2}^{-4} \text{ GHz} \qquad w = \frac{10c^2}{\Gamma^4(r) R^2} \left(\frac{\partial u(r)}{\partial r}\right)^{-2}}
$$

Observed profiles for the M87 inner jet

Nakamura+ 2018; Park+ 2019;Ro+ 2023

Dominant acceleration process for M87

 $\tau_{\text{Fermi-II}}' = 2(2+q)^{-1}c^{3-2q}B'^{q-2}e^{q-2}m_e^{2-q}\gamma'^{2-q}\lambda'_{c}^{q-1}A'_{\text{Ferr}}^{-1}$ $\approx 1.5 \times 10^{-4} R_{-2}^{2/3} \gamma^{\prime 1/3} B^{\prime -1/3} \beta^{\prime -2} \zeta_{-2}^{-1}$ yrs, *J.S.Wang+,2024, arXiv:2404.08625*

Shear acceleration takes over at larger z

$$
\tau_{\text{Shear}}^{-1} - \tau_{\text{shear}}' = 1.5(6 - q)^{-1} w B'^{2 - q} e^{2 - q} m_e^{q - 2} \gamma'^{q - 2} R^2
$$

\n
$$
w = 0.1, \beta_A = 0.1 \quad \text{and} \quad \tau_{-2}^{4/3} B'^{1/3} w \zeta_{-2} \gamma'^{-1/3} \text{ yrs},
$$

\n
$$
\tau_{\text{sc}}' \approx \zeta^{-1} r_L'^{2 - q} \lambda'^{q - 1} c
$$

time scale vs. electron energy for different distance to the black hole (z)

Application to inner jet of M87

$$
f_{\nu}=\int_{z_{\rm min}}^{z_{\rm max}}f_{\nu}(z)dz
$$

J.S.Wang+, 2024, ApJ, arXiv:2404.08625

Shaded region depends on the number density over distance (z) to the black hole

$$
n'(z) \propto z^{k_3} \rho'(z)
$$

Integration region determined by the angular resolution at corresponding frequencies

$$
f_{\nu}(z)dz = \delta_{\rm D}^{3}(z)S(z)dz \int_{\gamma'_{\rm min}}^{+\infty} n'(\gamma', z)F_{\rm syn}(\gamma', \nu)
$$

$$
\delta_{\rm D} = [\Gamma_{\rm j}(1 - \beta_{\rm j}\cos i)]^{-1}
$$

Application to kpc-scale jet of Cen A

H. E. S. S. Collaboration, 2020, Nature

TeV observations by HESS
shear acceleration v~0.6c by radio observations

X-ray and TeV emission explained by

↓

Analytical theory works for observations Numerical simulations for stochastic-shear acceleration

Relativistic MHD simulations with PLUTO

- ‣ Stochastic-shear acceleration depends on turbulence and velocity profile
- ‣ Periodic box simulations to study the jet instabilities (e.g. Kelvin-Helmholtz)
- ‣ Different parameters from analytical modeling of radio galaxies : *v* ∈ [0.6,0.99]*c*, $\sigma \in [0.002, 0.2]$ $\sigma_{y,\phi} = \langle B_{y,\phi}^2 \rangle / 8 \pi \rho_0 c^2$

¹² *J.S.Wang+, 2023, MNRAS, [arXiv:2212.03226](https://ui.adsabs.harvard.edu/link_gateway/2023MNRAS.519.1872W/arxiv:2212.03226)*

Relativistic MHD simulations with PLUTO

- ‣ Stochastic-shear acceleration depends on turbulence and velocity profile
- ‣ Periodic box simulations to study the jet instabilities (e.g. Kelvin-Helmholtz)
- ‣ Different parameters from analytical modeling of radio galaxies : *v* ∈ [0.6,0.99]*c*, $\sigma \in [0.002, 0.2]$ $\sigma_{y,\phi} = \langle B_{y,\phi}^2 \rangle / 8 \pi \rho_0 c^2$

¹³ *J.S.Wang+, 2023, MNRAS, [arXiv:2212.03226](https://ui.adsabs.harvard.edu/link_gateway/2023MNRAS.519.1872W/arxiv:2212.03226)*

‣ Higher-resolution (~10003) runs without sub-grid physics for test particles

 $R_{\text{domain}}: R_0: r_{g,\text{ini}}: \Delta x \approx 1000: 200: 3:1$

- \triangleright FR I: ($v = 0.6c$, R₀ = 0.1kpc)
- FR II: $(v = 0.9c, R_0 = 1kpc)$
- Magnetization: $\sigma = 0.02, 0.2$

Relativistic MHD + Test-particle Simulations

 γ

Particle spectrum

Particles efficiently accelerated close to the maximum theoretical limit (Hillas limit)

Rigidity= E/Ze

 $E_{\rm peak} \approx 0.1 - 0.3$ *E*_{Hillas} for different v and B values $E_{\rm Hillas} \approx Ze\bar{\nu}\bar{B}R$

Summary

‣ Stochastic-shear acceleration is an unavoidable (KH instability) and

‣ Cosmic rays can be accelerated to close to the maximum theoretical limit ($E_{\rm peak} \approx 0.1 - 0.3 \; E_{\rm Hillas}$), and large-scale AGN jet can contribute to

- efficient mechanism in relativistic jets
- In the framework of stochastic-shear acceleration, both multiwavelength observation of M87 inner jet and Cen A jet can be explained
- CRs above EeV

