

Speaker: Alexandre INVENTAR PhD Supervisor: Stefano GABICI

PeV particles from stellar wind termination shocks

UNIVERSITÀ DEGLI STUDI DI MILANO

∖/ 2024

8th Heidelberg International Symposium on **High Energy Gamma Ray Astronomy** Milano, 2-6 September 2024

COSMIC-RAY SPECTRUM AND PEV

What happens at PeV scale ?

Change of slope \rightarrow change in the acceleration process

COSMIC-RAY SPECTRUM AND PEV

What happens at PeV scale ?

- Change of slope \rightarrow change in the acceleration process
- Most energetic protons accelerated by galactic sources
 → Push galactic acceleration models to their limits to go to PeV
 → Better understand CRs acceleration and the contributions of classes of sources to the spectrum (PeVatrons ?)

COSMIC-RAY SPECTRUM AND PEV

What happens at PeV scale ?

- Change of slope \rightarrow change in the acceleration process
- Most energetic protons accelerated by galactic sources
 → Push galactic acceleration models to their limits to go to PeV
 → Better understand CRs acceleration and the contributions of classes of sources to the spectrum (PeVatrons ?)
- Problem to observe CRs: CRs diffused
- ightarrow Can't link them to their original sources
- \rightarrow Use γ -ray astronomy instead + molecular clouds: $p+p\rightarrow\gamma$

OUTLINE

LHAASO

OUTLINE

For which sources and parameters (distance, time,...) can a dense molecular cloud present an excess of γ rays at different energies ?

→Model escape and transport of CRs between sources and molecular clouds, and the consequent production of γ rays at different energies

Theory

• Focus on **YMSCs (stellar wind)**, p^+ and E=3PeV (knee)

OUTLINE

For which sources and parameters (distance, time,...) can a dense molecular cloud present an excess of γ rays at different energies ?

 \rightarrow Model escape and transport of CRs between sources and molecular clouds, and the consequent production of γ rays at different energies

Theory

Focus on **YMSCs (stellar wind)**, p^+ and E=3PeV (knee)

Find corresponding existing systems, use LHAASO to compare the model to the observed γ -ray flux

 \rightarrow Identify the contributions of different classes of galactic accelerators to the flux of CRs in the PeV domain. \rightarrow obtain better constraints on different acceleration parameters (WTS efficiency, injection spectrum in the ISM,...)

WTS : ACCELERATION AND ESCAPE

WTS : ACCELERATION AND ESCAPE

- Take Efficiency $\epsilon = \frac{1}{10}$ for both, but goal is to constrain ϵ_{wind} • Take $E_{cut,wind} = 3PeV$
- A.Inventar, Gamma Symposium 2024

TRANSPORT MODEL

- Diffusion equation
- Spherically symetric case (3D)
- Isotropic
- Point-like sources

TRANSPORT MODEL

TRANSPORT MODEL

P-P INTERACTIONS AND γ RAYS

MCs are very dense \rightarrow a lot of target protons

 $(\pi_0 \text{ decay})$

P-P INTERACTIONS AND γ RAYS

MCs are very dense \rightarrow a lot of target protons

 $p+p \rightarrow ... + \pi_0 \rightarrow 2\gamma$

 $(\pi_0 \text{ decay})$

 γ rays emissivity via p-p interactions :

$$q_{\gamma} \sim n_H \sigma c f$$

Parametrizations of σ taken from *Kafexhiu et al, 2014*

$$\phi_{\gamma} \sim \frac{q_{\gamma}}{4\pi n_H d^2} \frac{M_{cloud}}{m_p}$$

 γ rays flux observed on Earth:

A.Inventar, Gamma Symposium 2024

γ RAYS FLUX AND DETECTIONS

→Need LHAASO sensitivity (3yrs) +angular resolution, and also the mass of the cloud and its distance to the Earth

γ RAYS FLUX AND DETECTIONS

→Need LHAASO sensitivity (3yrs) +angular resolution, and also the mass of the cloud and its distance to the Earth

γ RAYS FLUX AND DETECTIONS

 \rightarrow Need LHAASO sensitivity (3yrs) +angular resolution, and also the mass of the cloud and its distance to the Earth

γ RAYS SPECTRA AT FIXED PARAMETERS

Can fix the distance and see the spectrum at this distance to compare with differential sensitivities:

→Suppose a suppression of diffusion coefficient via streaming instabilities

A.Inventar, Gamma Symposium 2024

γ RAYS SPECTRA AT FIXED PARAMETERS

Can fix the distance and see the spectrum at this distance to compare with differential sensitivities:

A.Inventar, Gamma Symposium 2024

APPLICATION: W43 CLUSTER

VHE/UHE Gamma-ray emission in W43 region, that contains very massive clouds and a powerful star cluster

APPLICATION: W43 CLUSTER

VHE/UHE Gamma-ray emission in W43 region, that contains very massive clouds and a powerful star cluster

A.Inventar, Gamma Symposium 2024

Leptonic ? $\tau_{cool,e}$ - too low for this emission size

• Estimation : $\frac{D_a}{D_i} \sim \frac{RR_{coherence}}{R_{sh}^2} \sim 100$ (energy dissipated in smaller space) \rightarrow solves the problem of D_0 suppression

A.Inventar, Gamma Symposium 2024

Other clouds not visible by LHAASO since they are farther, less massive and not in the anisotropy direction

CONCLUSION AND PROSPECTS

Theoretical side :

- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector (LHAASO) sensitivity \rightarrow for plausible parameters, R must be \lesssim 500 pc
- Needs either D_0 suppression or 1D diffusion
- Can do it for other energies \rightarrow whole spectra

CONCLUSION AND PROSPECTS

Theoretical side :

- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector (LHAASO) sensitivity \rightarrow for plausible parameters, R must be \lesssim 500 pc
- Needs either D_0 suppression or 1D diffusion
- Can do it for other energies \rightarrow whole spectra

Application : W43

- Observed UHE gamma-ray flux by LHAASO , no SNRs nor pulsars nearby yet
- W43: Powerful young cluster (t = 6Myr, $L \sim 3e38erg/s$) + Very massive cloud (M= $8e5M_{\odot}$)
- Good fit of the datapoints with this system and 3D diffusion
- Inferred parameters are consistent and constrained (slope, D0, cutoff). Main constrained quantity :
- Can indicate a stellar wind contribution for PeVatrons !

Perspectives : More sophisticated models, Apply to other such systems and dark PeVatrons

CONCLUSION AND PROSPECTS

Theoretical side :

- Excess around PeV possible with YMSC but result very sensitive to a change of parameters (α , δ , D_0 , L_w , ...)
- Limitation: γ ray detector (LHAASO) sensitivity \rightarrow for plausible parameters, R must be \lesssim 500 pc
- Needs either D_0 suppression or 1D diffusion
- Can do it for other energies \rightarrow whole spectra

Application : W43

- Observed UHE gamma-ray flux by LHAASO , no SNRs nor pulsars nearby yet
- W43: Powerful young cluster (t = 6Myr, $L \sim 3e38erg/s$) + Very massive cloud (M= $8e5M_{\odot}$)
- Good fit of the datapoints with this system and 3D diffusion
- Inferred parameters are consistent and constrained (slope, D0, cutoff). Main constrained quantity :
- Can indicate a stellar wind contribution for PeVatrons !

Perspectives : More sophisticated models, Apply to other such systems and dark PeVatrons

Thank you for your attention ! A.Inventar, Gamma Symposium 2024

 $\epsilon \frac{1 \ e \ 28 \ cm^2 s^{-1}}{D_0} \sim \frac{1}{2.25}$

(See paper in preparation for more details)