

8th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy 3rd September 2024

Giovanni Cozzolongo, A. Mitchell, S. Spencer, D. Malyshev, T. Wach, T. Unbehaun

ECAP, FAU Erlangen-Nürnberg

Fermi Gamma-ray Space Telescope

Giovanni Cozzolongo - ECAP

• Large Area Telescope (LAT)

• Pair conversion telescope.

• Detects photons in an energy range **from** 20 MeV to over 300 GeV.

• Covers the entire sky in 3 hours.

• Measures of time, energy and direction of incident photons.

https://arxiv.org/abs/2307.12546

• LAT **14-year** Source Catalog (4FGL-DR4).

Fermi Point Source Catalog

S. Abdollahi et al. (2020) ApJS, 247, 33

- There are 2065 **unidentified sources**.
- There are 81 **extended sources**
- Are there **extended sources** erroneously described as groups of
 - point sources?

Giovanni Cozzolongo - ECAP

• **4FGL-DR4** catalog contains 7195 sources.

The case of 4FGL J1813.1-1737e

Giovanni Cozzolongo - ECAP

• **Two unidentified 3FGL point sources** in the region of HESS J1813-178, associated with a γ-ray PWN (Acero et al., 2015).

• Extended morphology fits data better than two point sources (Araya, 2018).

Comparable spectral indices measured at GeV and TeV (Araya, 2018).

• Fermi-LAT and H.E.S.S. data can be described by a single source model (F. Aharonian et al. 2024, A&A, 686, A149).

Spatial clustering

- Apply unsupervised machine learning to the 4FGL catalog.
- Used **DBSCAN** (Density-Based Spatial Clustering of Applications with Noise).
- DBSCAN **searches for clusters of points** and classifies the points into core, border or noise points (Ester et al., 1996).

atalog. plications with Noise). ies the points into core, border or

Fermi-LAT clusters map

- Set **eps = 0.005 rad** ≈ 0.3 deg and **minPts = 2**.
- Included only **unassociated sources** and sources associated with **pulsars**, supernova remnants, and active galaxies (7030 sources in total). • Found 44 clusters (106 sources), each including at least one unidentified source. • There are **mostly clusters of size 2**, with some up to 7.

HGPS (HESS Galactic Plane Survey) contours map

Giovanni Cozzolongo - ECAP

Spatial binning

- https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm • **PSF event types** are based on the quality of the reconstructed direction.
- Set **minimum energy** to 5 GeV to achieve PSF of less than 0.1 degrees.
- Set **maximum energy** to 1 TeV, achieving Energy Dispersion below 15%.
- Can use spatial bin size of 0.025 deg (Ackermann et al. 2018, ApJS, 237, 32).

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:
 - N point sources TS:

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:
 - N point sources TS:

 $TS_{ext} = 2 \log(L_{ext}/L_{ps})$ ${
m TS}_{
m Npts} = 2\,\log({
m L}_{
m Npts}/{
m L}_{
m ps})$

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

 \leftarrow

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:

 $TS_{ext} = 2 \log(L_{ext}/L_{ps})$ \leftarrow \circ N point sources TS: $TS_{Npts} = 2 \log(L_{Npts}/L_{ps})$

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:
 - N point sources TS:

 $TS_{ext} = 2 \log(L_{ext}/L_{ps})$ $TS_{Npts} = 2 \log(L_{Npts}/L_{ps})$ \leftarrow

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:
 - N point sources TS:

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:
 - N point sources TS:

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

- Likelihood nomenclatures:
 - **No-source** hypothesis: L_0
 - \circ Single point hypothesis: L_{ps}
- Test Statistic definitions:
 - \circ Extended source TS: $TS = 2 \log(L_{ext}/L_0)$
 - Source extension TS:
 - N point sources TS:

- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
 - Claim a detection: TS > 25
 - $TS_{ext} > 16$ • Define a source as extended:
 - \circ Find the preferred model (AIC test): $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$ \leftarrow

Cluster 28 example

- - preferred.

• There are **seven unassociated**

sources (grouped together in a cluster by the DBSCAN algorithm) coincident with a significant residual in HGPS.

• For the following analysis, we used **Fermipy** v1.2.3 (Wood et al., 2017).

• We fit an extended source model to the cluster, excluding 4FGL J1759.1-2347c for which a point source model is

Cluster 28 residuals map

Giovanni Cozzolongo - ECAP

• TS results:

- \circ TS = 747
- \circ TS_{ext} = 407
- \circ TS_{6pts} = 378

• TS criteria:

- \checkmark TS > 25
- $\checkmark TS_{ext} > 16$
- $\checkmark \ TS_{ext} > TS_{6pts} 34$

Spatial model:

- type: RadialGaussian
- \circ GLON = (5.96 \pm 0.01) deg
- \circ GLAT = $-(0.44\pm0.01)$ deg
- $\circ \ \ r_{68\%} = (0.26 \pm 0.01) \, deg$

Cluster 28 energy spectrum

• Spectrum type:

- $\circ~{
 m N}_0 = (2.6\pm 0.4) imes 10^{-11}\,rac{1}{
 m MeV^2\,cm^2\,s}$ \circ $\Gamma=-2.33\pm0.06$
- \circ E₀ = 1000 MeV

• **Curvature test** relative to *PowerLaw*: • LogParabola: 1.152 • *PLSuperExpCutoff4*: 0.909

Giovanni Cozzolongo - ECAP

\circ PowerLaw: $\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^T$

• Spectrum parameters:

Summary

• **Spatial clustering** with the DBSCAN algorithm for unidentified point sources from the 4FGL-DR4 catalog to search for potentially mis-identified extended sources.

• We use Fermipy to compare a collection of point sources model and a single **extended source model** for clusters in the Galactic plane.

• The example of Cluster 28 shows that, **potentially, there are extended sources** instead of clusters of unassociated Fermi-LAT sources

Outlook

- Include systematic errors (e.g., uncertainties in the Galactic diffuse emission, on the shape of the extended source, and in our knowledge of the Fermi-LAT IRFs).
- Vary the radius from 0.3 up to e.g. 0.5 degrees.
- Explore on **TeV/MWL context**.
- Look at the clusters in depth (e.g. joint fits of Fermi-LAT and H.E.S.S. data in Gammapy (Donath et al., 2023).
- Extend this analysis to **incorporate eROSITA data** (see the poster "Towards a joint Xray and gamma-ray analysis of Pulsar Wind Nebulae with Gammapy" by K. Egg).

Thank you for listening!

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics Nikolaus-Fiebiger-Str. 2, Lehrstuhl für Physik 91058 Erlangen, Germany e-mail: giovanni.cozzolongo@fau.de

Giovanni Cozzolongo - ECAP

Back-Up (1)

• Binning	• IRFs
 Spatial bin size: 0.025 deg 	 P8R3_SOURCE_
 ROI width: 6 deg 	• Energy
 Source ROI width: 10 	 min: 5 GeV
 Energy bins per Decade: 8 	o max : 1 TeV
• Event class	• Time
P8R3_SOURCE	o min: 246823875
 Event types 	o max: 68100480
FRONT + BACK	• Filters
 PSFO, PSF1, PSF2, PSF3 	 DATA_QUAL>0
• Models	 LAT_CONFIG==
 Catalog: gll_psc_v34.fit 	 Zenith angle cut
 Galactic Diffuse: gll_iem_v07.fits 	 90 deg

ingle cut

- CONFIG==1
- 681004805
- 246823875
- 5 GeV 1 TeV
- _SOURCE_V3_PSF*_v1

Back-Up (2)

- GC: galactic center
- **PSR**: young pulsars
- **MSP**: millisecond pulsars
- **PWN**: pulsar wind nebula
- **SNR**: supernova remnant
- **SPP**: supernova remnant / pulsar wind nebula
- GLC: globular cluster
- SFR: star-forming region
- HMB: high-mass binary
- LMB: low-mass binary
- BIN: binary
- NOV: nova

- **FSRQ**: FSRQ type of blazar
- RDG: radio galaxy
- **AGN**: nonblazar active galaxy
- SSRQ: steep spectrum radio quasar
- CSS: compact steep spectrum radio source
- **BCU**: blazar candidate of uncertain type NLSY1: narrow-line Seyfert 1
- SEY: seyfert galaxy
- SBG: starburst galaxy
- GAL: normal galaxy (or part)

Giovanni Cozzolongo - ECAP

• **BLL**: Lac type of blazar

Back-Up (3)

W. B. Atwood et al. (2009) ApJ, 697, 1071

- Detect photons in an energy range **from**
- Field of view 2.4 steradian (20% sky).
- Covers the **entire sky** in 3 hours.
- Measures of time, energy and direction of incident photons.
- - calorimeter module;

Giovanni Cozzolongo - ECAP

• Fermi Gamma-ray Space Telescope. Launched by NASA on June 11, 2008.

• Pair conversion telescope.

20 MeV to over 300 GeV.

• 4 × 4 array of identical towers each one

including a **tracker/converter** and a

• Anticoincidence detector (ACD).