A Multiwavelength Study of a Long-Duration VHE **Flare from BL Lacertae** with **VERITAS**

Claire E. Hinrichs, for the VERITAS Collaboration

Advisors: Wystan Benbow & Ryan Hickox

8th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy

September 2024 - Milan, Italy

- Subclass of AGN
 - Jet along our line of sight
- Double-humped SED
 - Blazar Sequence:
 - LBL, IBL, HBL ...

- Subclass of AGN
 - Jet along our line of sight
- Double-humped SED
 - Blazar Sequence:
 - LBL, IBL, HBL ...
- Emission Mechanisms
 - LBL: EC
 - HBL: SSC
 - IBL: ?

- Subclass of AGN
 - Jet along our line of sight
- Double-humped SED
 - Blazar Sequence:
 - LBL, IBL, HBL ...
- Emission Mechanisms
 - LBL: EC
 - HBL: SSC
 - IBL: ?

<u>Open Question #1:</u> What is the dominant emission mechanism that drives the observed HE emission from IBLs?

- Subclass of AGN
 - Jet along our line of sight
- Double-humped SED
 - Blazar Sequence:
 - LBL, IBL, HBL ...
- Emission Mechanisms
 - LBL: EC
 - HBL: SSC
 - IBL: ?
- Blazars are very active sources!

- Subclass of AGN
 - Jet along our line of sight
- Double-humped SED
 - Blazar Sequence:
 - LBL, IBL, HBL ...
- Emission Mechanisms
 - LBL: EC
 - HBL: SSC
 - IBL: ?
- Blazars are very active sources!

Open Question #2: Does the dominant emission mechanism for IBLs change during flaring periods?

- Subclass of AGN
 - Jet along our line of sight
- Double-humped SED
 - Blazar Sequence:
 - LBL, IBL, HBL ...
- Emission Mechanisms
 - LBL: EC
 - HBL: SSC
 - IBL: ?
- Blazars are very active sources!

Open Question #2: Does the dominant emission mechanism for IBLs change during flaring periods?

Fall 2022 BL Lacertae Flare

BL Lacertae

- Blazar IBL
 - z = 0.07
- Typically >>10 hr to detect in VHE (5**σ**)

BL Lacertae

- Blazar IBL
 - z = 0.07
- Typically >>10 hr to detect in VHE (5σ)
- Very active source:
 - Sept. 2013 flare
 - June 2015 flare
 - Oct. 2016 flare
 - Dec. 2017 flare
 - May 2019 flare
 - 2020-2022 active state

Rise time of ~2-3 hr and a decay time of ~36 min

BL Lacertae

- Blazar IBL
 - z = 0.07
- Typically >>10 hr to detect in VHE (5σ)
- Very active source:
 - Sept. 2013 flare
 - June 2015 flare
 - Oct. 2016 flare
 - Dec. 2017 flare
 - May 2019 flare
 - 2020-2022 active state

Previous flaring activity has only shown rapid variability (minutes to day timescales)!

Rise time of ~2-3 hr and a decay time of ~36 min

Fall 2022 BL Lacertae Flare Timeline

Fall 2022 BL Lacertae Flare Timeline

Fall 2022 BL Lacertae Flare Timeline

VERITAS

- Fred Lawrence Whipple Observatory, Tucson, AZ, USA
- Array of four 12-m Atmospheric-Cherenkov Telescopes
- Energy range: ~ 100 GeV to ~ 30 TeV
- One of the most sensitive ground-based TeV observatories

VERITAS Results

- Total Exposure: ~10 hr
 - Sept. Dec. 2022
- ~10% Crab Nebula Flux; 28σ
 - F (>350 GeV): (1.1 ± 0.1) × 10⁻¹¹ cm⁻²s⁻¹

VERITAS Significance Map

VERITAS Results

- Total Exposure: ~10 hr
 - Sept. Dec. 2022
- ~10% Crab Nebula Flux; 28σ
 - F (>350 GeV): (1.1 ± 0.1) × 10⁻¹¹ cm⁻²s⁻¹
- Photon Index: 3.6 ± 0.1
 - Power Law Fit: χ^2 /DOF \cong 10.2/4 \cong 2.6
 - Soft spectrum consistent with previous flares

High-Energy Multiwavelength Lightcurve

High-Energy Multiwavelength Lightcurve

Spectral Energy Distribution - VERITAS Epoch

SED Modeling

- One-zone SSC vs. SSC+EIC modeling
- Nested model
 - Allows for direct comparison
- Publicly available blazar SED modeling tool
 - <u>https://github.com/Ohervet/Bjet_MCMC</u>

SED Modeling Results

Claire Hinrichs | Gamma 2024 Symposium

SED Modeling Results

7σ preference for SSC+EIC model over pure one-zone SSC model!

SSC+EIC Model

SSC Model

Claire Hinrichs | Gamma 2024 Symposium

Open Question #1: What is the dominant emission mechanism that drives the observed HE emission from IBLs?

Open Question #1: What is the dominant emission mechanism that drives the observed HE emission from IBLs?

SSC + EIC is preferred (7 σ) in this case – needs further study!

Open Question #1: What is the dominant emission mechanism that drives the observed HE emission from IBLs?

SSC + EIC is preferred (7σ) in this case – needs further study!

Open Question #2: Does the dominant emission mechanism change during flaring periods?

13

Open Question #1: What is the dominant emission mechanism that drives the observed HE emission from IBLs?

SSC + EIC is preferred (7σ) in this case – needs further study!

Open Question #2: Does the dominant emission mechanism change during flaring periods? First long-duration (~ 40 days) VHE flare observed – needs further study during different flaring states!

- Publish this work (in the final paper committee stages)
- Long term study of BL Lacertae
- Long term study of other selected IBLs

Future Work

- Publish this work (in the final paper committee stages)
- Long term study of BL Lacertae
- Long term study of other selected IBLs

Future Work

Thank you! QUESTIONS?

Email: claire.hinrichs@cfa.harvard.edu

Claire Hinrichs | Gamma 2024 Symposium

References and Acknowledgements

Nieppola, E., Tornikoski, M., & Valtaoja, E. 2005, Astronomy & amp Astrophysics, 445, 441

Blandford, R. D., & Rees, M. J. 1978, Physica Scripta, 17, 265

Blandford, R., Meier, D., & Readhead, A. 2019, Annual Review of Astronomy and Astrophysics, 57, 467–509

Abeysekara, A. U., Benbow, W., Bird, R., et al. 2018, The Astrophysical Journal, 856, 95,

Hervet, O., Johnson, C. A., & Youngquist, A. 2024, The Astrophysical Journal, 962, 140

Hervet, O., Boisson, C., & Sol, H. 2015, A&A, 578, A69

Holder, J. 2011, in International Cosmic Ray Conference, Vol. 11, International Cosmic Ray Conference, 137,449

Miller, J. S., French, H. B., & Hawley, S. A. 1978, ApJL, 219, L85

F. Aharonian, et al. (HESS Collaboration) 2007

S. Abdollahi et al. 2017 – LAT Repository

P.A. Evans et al A&A 469, 379–385 (2007)

P.A. Evans er al Mon. Not. R. Astron. Soc. 397, 1177-1201 (2009)

Thank you to Atreya Acharyya for providing the Fermi-LAT observations and analysis, Sebastian Kiehlmann for the OVRO analysis and observations, Alan Marscher and Svetlana Jorstad for the VLBA analysis and observation, Alberto Sadun, Masoud Asadi-Zeydabadi, and Katie Riley for the ATLAS observations and analysis, Piatra Lusen for the FLWO optical observations and analysis, and Anjana Kaushik Talluri for the NuSTAR analysis and observations.

VERITAS Collaboration Webpage: https://veritas.sao.arizona.edu/

This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Helmholtz Association in Germany. This research used resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science, and resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.

This material is based upon work supported by the National Science Foundation under Grant No. 2125733.