

Gamma-ray Emission from Starburst, Main Sequence, and Dead Galaxies

Contributions to Extragalactic Isotropic Backgrounds

3rd September, 2024: Gamma2024, Milan, Italy

Ellis R Owen

JSPS Fellow; Theoretical Astrophysics Group, Osaka University

Collaborators: Y. Inoue (Osaka U), T. Fujiwara (Osaka U), A. K.-H. Kong (NTHU), K.G. Lee (IPMU, U Tokyo)

erowen@astro-osaka.jp

Outline

- High energy emission from galaxies
- Star-forming, normal and quiescent galaxies
- A new prototype gamma-ray emission model
- Semi-analytic modeling of galaxy populations
- Contribution to the Isotropic Gamma-ray Background

γ -ray emission from galaxies

Gamma-ray luminosity has a close relation with tracers of star-formation rate

Hadronic/Lepto-hadronic processes

pp interaction

+ pion multiplicities at higher energies

γ -ray emission from galaxies

Gamma-ray pulsar populations

 10^{32} - 10^{37} erg/s

Potential to be a major contributor in an older galaxy

2 types of pulsars can contribute gamma-rays in different ways

Pulsar contribution: population

Population evolution model:

$$\frac{\partial n(L_{\gamma},t)}{\partial t} + \underbrace{\frac{\mathrm{d}L_{\gamma}}{\mathrm{d}t} \frac{\partial n(L_{\gamma},t)}{\partial L_{\gamma}}}_{\substack{\mathrm{fading} \\ (\mathrm{ageing})}} = \underbrace{-\kappa n(L_{\gamma},t)}_{\substack{\mathrm{destruction} \\ (\mathrm{death})}} + \underbrace{f(L_{\gamma},t)}_{\substack{\mathrm{formation} \\ (\mathrm{birth})}}$$

Canonical pulsars/halos:

- Birth: following SFR
- Ageing: Spin-down power evolution
- Death: Death line (empirical)

MSPs:

- Birth: 1 Gyr delay from SFR
- Ageing: Effectively none (very slow)
- Death: Death line (empirical)

Pulsar contribution: spectrum

Canonical pulsars/halos

One-zone model (lower energy emission sub-dominant)

Main contribution at 10s of TeV

MSPs

Empirical model

Main contribution at < 10 GeV

Prototype model: evolution

Example massive MW-like galaxy

Low energy gamma-rays

High-energy gamma-rays

Star-formation rate

Prototype model

Standard parameters adopted Starburst vs. quiescent galaxies are both consistent

Primary CRe to CRp ratio of 2%

Fermi-LAT data from Ajello et al. 2020

Prototype model

Total emission from most nearby galaxies can be captured by the prototype

Prototype model at cosmic noon

Properties evolve substantially with cosmic time

UniverseMachine

- **Semi-analytic model** of galaxy formation/evolution linking galaxy growth to halo growth
- **Empirically informed**: Many universes simulated; predicted observables compared to data to calculate likelihood of chosen parameters

Behroozi et al. 2019

Isotropic high-energy backgrounds

Preliminary

Mainly from dead galaxies

Redshift contributions

• MSPs drive a boost in late time gamma-ray emission from massive galaxies

- Testing this model: small-scale anisotropies correlation term
 - Hard to detect, foregrounds may contaminate
 - Cross-correlation with galaxy surveys to boost signal

Conclusions

- **Multiple components** in the extra-galactic isotropic gamma-ray background
- Gamma-ray emission from galaxies may be **more leptonic** (e.g. MSPs @ GeV energies, pulsar halos @ TeV energies), with old quiescent galaxies emerging as a possible source population
- Gamma-ray emission from normal and star-forming galaxies correlates with their star-formation rate, and follows the cosmic star-formation rate density
- Dead galaxies develop gamma-ray emission Gyrs after the end of their star-formation
- Different evolutionary timescales could allow their relative contributions to be tested observationally

See paper on arXiv next month for details...

