Proton acceleration and pair enrichment in magnetospheric current sheets of M87\*

#### **Stamatios I. Stathopoulos** In collaboration with: M. Petropoulou, L. Sironi and D. Giannios



National and Kapodistrian University of Athens

# 2024

8th Heidelberg International Symposium on High Energy Gamma Ray Astronomy Milano, 2-6 September 2024



## M87\* Emission & Variability



Credit: <u>The EHT Multi-wavelength Science Working Group</u>: the EHT Collaboration; ALMA (ESO/NAOJ/NRAO): the EVN: the EAVN Collaboration; VLBA (NRAO): the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observatory; the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA.



- 1. Variability:  $\Delta t \sim 1-3 d \sim R_g/c$
- 2. Non-thermal emission suggests particle acceleration
- 3. EHT obs: Magnetically arrested state

# M87\* Results from 3D GRMHD simulations



<sup>1.</sup> Accumulation of magnetic flux in the horizon.

- 2. Magnetic force balances the inward gravitational force.
- 3. Periodic eruptions of magnetic flux from the SMBH into the disk.
- 4. These eruptions are associated with magnetic reconnection (equatorial current sheet).

B. Ripperda et al 2022

# M87\* Results from GRMHD simulations





- Length of current sheet~5-10 rg
- Lifetime of current sheet~10 rg/c

4

# **M87\* Results from GRMHD simulations**





- Length of current sheet~5-10 rg
- Lifetime of current sheet~10 rg/c



$$\sigma_e = \frac{B_0^2}{4\pi n_{e^\pm} c^2} \gg 1$$

# Magnetic reconnection in 2D (PIC simulations)

Reconnection layer tears up into plasmoids



Plasmoids advect and merge with other plasmoids

Pairs accelerate to power law distributions up to  $\gamma \sim \sigma_{\rm e}$ 

Acceleration in regions with non ideal electric field  $E \neq -\frac{v}{-} \times B$ 

$$E \neq -\frac{v}{c} \times B$$

or curvature-drift a.o.



### Magnetic reconnection in 3D



# Current sheet of M87\* (Model description)



# Pairs distribution in the current sheet M87\*



# Proton acceleration in M87\* current sheets

Maximum available energy in the current sheet:



# Proton acceleration in M87\* current sheets

Maximum available energy in the current sheet:



## Proton acceleration M87\* (photon fields)



# Proton acceleration M87\* (photon fields)

Non-thermal photon field Low energy targets <eV

depend on  $\sigma_e$ 

Free pairs emit synchrotron photons in the burn-off limit ~10 MeV

IC emission is minimal compared to the synchrotron emission (depends on  $\sigma_e$ )



## Maximum energy of protons in M87\*



# Pair enrichment in M87\*

10 MeV photons produced from the free pairs can be absorbed from lower energy photons  $${\rm P}^2$$ 



# Conclusions

- Proton acceleration ~EeV energies
- Pair enrichment σ<sub>e</sub> modification
- X-ray and MeV flares in magnetospheric currents sheets M87\*

# **Future plans**

- Include a proton population in the current sheet (motivated by PIC simulations).
- Account for anisotropic effects in the pair distributions.
- Provide a more accurate calculation of pair production (geometric effects).

# Thank you !

Backup slides

Model description (Injection of particles)



# Fraction of free to trapped pairs

H. Zhang et al, 2023



$$\xi \equiv \frac{\left[\gamma N^{\text{free}}(\gamma) + \gamma N_{\text{fr}}^{\text{trap}}(\gamma)\right]_{\gamma = \gamma_{\text{inj}}}}{\left[\gamma N_{\text{tot}}(\gamma)\right]_{\gamma = \gamma_{\text{inj}}}}$$

Around 20-30% of the pairs with  $\gamma \sim \sigma_e$  are in the free phase of acceleration.

$$N^{\text{free}}(\gamma) = \zeta Q_{\text{e,inj}}^{\text{tot}} \gamma^{-1} t_{\text{acc}}(\gamma), \ \gamma \ge \gamma_{\text{inj}}$$

$$N_{\rm fr}^{\rm trap}(\gamma) = \zeta Q_{\rm e,inj}^{\rm tot} \gamma^{-2} \gamma_{\rm inj} t_{\rm adv}, \ \gamma \ge \gamma_{\rm inj}$$

$$N_{\rm X}^{\rm trap}(\gamma) = (1-\zeta) \frac{Q_{\rm e,inj}^{\rm tot}}{\ln(\sigma_{\rm e})} \gamma^{-1} t_{\rm adv}, \, \gamma \leq \gamma_{\rm inj}$$

19

Pair spectrum



#### Stathopoulos et al. 2024, arXiv:2406.01211

Photon spectrum



Model parameters vs X-ray observations



Low accretion rates and high magnetizations are favored

#### Proton timescales



23

#### Pair enrichment and $\sigma_e$ modification



