

Deep observations of the starburst galaxy M82 by the VERITAS gamma-ray observatory

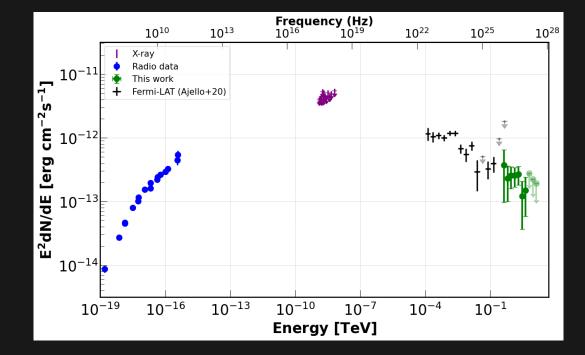
Martin Pohl

for the VERITAS collaboration

Introduction

- New analysis of the entire VERITAS data set
- Modeling the entire SED
 - Assume that all we see is diffuse emission and not sources
 - Ignore spatial variations (one-zone modeling)
 - Concentrate on starburst core

New SED


All data

4 telescopes only

254h after cuts

Significance 6.5σ

X-ray sources subtracted

Modeling

New fiducial parameters

Parameter	Value	Unit		
n_H	200	cm^{-3}		
n_{e}	<mark>5</mark> 0	cm^{-3}		
$U_{ m mag}$	500	${\rm eVcm^{-3}}$		
U_{rad}	500	${\rm eVcm^{-3}}$		

Leptonic scenario

Energy loss rate

$$-b(E) = C_1 + C_2 E + C_3 E^2$$

$$C_1 = (3.7 \cdot 10^{-16} \text{ GeV s}^{-1}) (n_H + 1.54 n_e)$$

$$C_2 = (10^{-15} \text{ s}^{-1}) (n_H + 0.95 n_e)$$

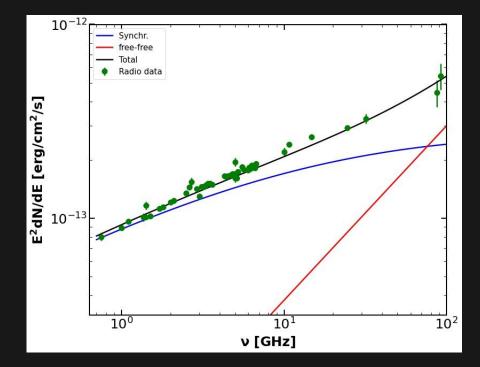
$$C_3 = (10^{-16} \text{ GeV}^{-1} \text{ s}^{-1}) (U_{\text{mag}} + U_{\text{rad}}) .$$

Lifetime a factor 100 shorter than starburst duration \rightarrow calorimetry

Two spectral breaks, at 0.4 GeV and at 2.5 GeV

$$N(E) = rac{1}{|b(E)|} \int_E dE' \; Q(E')$$

Leptonic scenario


Radio spectrum

Electron injection with Q~E^{-2.25}

Free-free emission fits to absorption cut-off at 300 MHz

Soft GeV-scale bremsstrahlung

Weak GeV-scale inverse-Compton

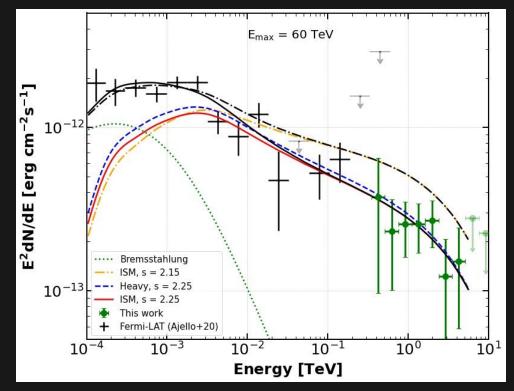
Hadronic scenario

Assume particle spectrum is a power law in momentum

Gamma-ray production calculated with DPMJET III (Bhatt et al. 2020)

Two different compositions

(target and cosmic rays)


Components	ISM	Heavy
Hydrogen	0.909	0.848
Helium	0.090	0.146
Carbon	2.1e-4	5.2e-3
Oxygen	1.6e-4	7.e-4

Hadronic scenario

Significant flux at 200 MeV

Electron/ion ratio large at a few GeV

Hadronic scenario

Heavy composition give more sub-GeV gamma rays. No conclusions possible

Spectral index s=2.25 provides a good match, s=2.15 does not.

The maximum energy is poorly constrained

Calorimetry: luminosity directly measures the cosmic-ray source power

Secondary electrons

Production rate, Q_e(E), computed with DPMJET III

$$\frac{\partial}{\partial E} \left(b(E) N \right) + \frac{N}{T} = Q_e(E)$$

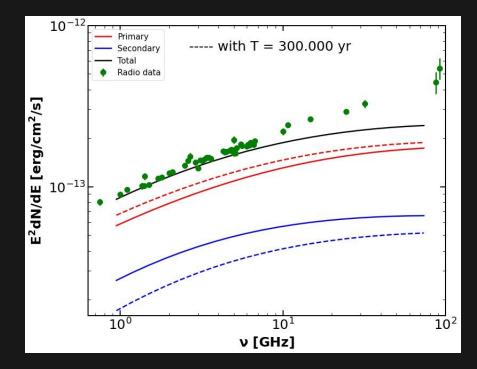
.

Solve balance equation

$$N(E,t) = \int_E^\infty dE' \; \frac{Q_e(E')}{|b(E)|} \; \exp\left(-\int_E^{E'} \frac{du}{T \, |b(u)|}\right)$$

Convolve with synchrotron emissivity

$$P_{E_{\gamma}} = \frac{E^2}{(10^{16} \text{ GeV s})} U_{\text{mag}} \delta \left(E_{\gamma} - aE^2 \right)$$


Secondary electrons

Secondary synchrotron flux high

unless n_H/U_{mag} is large But then too much 100-MeV flux

Situation relaxes with catastrophic losses by, e.g., escape in the wind.

Summary

Hadronic scenario clearly preferred

CR source spectrum has index s=2.25 (similar to SNRs)

Strong bremsstrahlung flux below 500 MeV \rightarrow large N_e/N_i

Strong secondary synchrotron flux at a few GHz

Catastrophic losses by, e.g., advective escape possible