

Deep observations of the starburst galaxy M82 by the VERITAS gamma-ray observatory

Martin Pohl

for the VERITAS collaboration

Introduction

- **New analysis of the entire VERITAS data set**
- **Modeling the entire SED**
	- **Assume that all we see is diffuse emission and not sources**
	- **Ignore spatial variations (one-zone modeling)**
	- **Concentrate on starburst core**

New SED

All data

4 telescopes only

254h after cuts

Significance 6.5s

X-ray sources subtracted

Modeling

New fiducial parameters

Leptonic scenario

Energy loss rate

$$
-b(E) = C_1 + C_2 E + C_3 E^2
$$

$$
C_1 = (3.7 \cdot 10^{-16} \text{ GeV s}^{-1}) (n_H + 1.54 n_e)
$$

\n
$$
C_2 = (10^{-15} \text{ s}^{-1}) (n_H + 0.95 n_e)
$$

\n
$$
C_3 = (10^{-16} \text{ GeV}^{-1} \text{ s}^{-1}) (U_{\text{mag}} + U_{\text{rad}}).
$$

Lifetime a factor 100 shorter than starburst duration → **calorimetry**

Two spectral breaks, at 0.4 GeV and at 2.5 GeV

$$
N(E)=\frac{1}{|b(E)|}\int_{E}dE'\,\,Q(E')
$$

Leptonic scenario

Radio spectrum

Electron injection with Q~E-2.25

Free-free emission fits to absorption cut-off at 300 MHz

Soft GeV-scale bremsstrahlung

Weak GeV-scale inverse-Compton

Hadronic scenario

Assume particle spectrum is a power law in momentum

Gamma-ray production calculated with DPMJET III (Bhatt et al. 2020)

Two different compositions

(target and cosmic rays)

Hadronic scenario

Significant flux at 200 MeV

Electron/ion ratio large at a few GeV

Hadronic scenario

Heavy composition give more sub-GeV gamma rays. No conclusions possible

Spectral index s=2.25 provides a good match, s=2.15 does not.

The maximum energy is poorly constrained

Calorimetry: luminosity directly measures the cosmic-ray source power

Secondary electrons

Production rate, Q^e (E), computed with DPMJET III

$$
\frac{\partial}{\partial E}\left(b(E)\,N\right) + \frac{N}{T} = Q_e(E)
$$

 \mathbf{r}

Solve balance equation

$$
N(E,t) = \int_E^{\infty} dE' \; \frac{Q_e(E')}{|b(E)|} \; \exp\left(-\int_E^{E'} \frac{du}{T\,|b(u)|}\right)
$$

Convolve with synchrotron emissivity

$$
P_{E_{\gamma}} = \frac{E^2}{\left(10^{16}~{\rm GeV\,s}\right)}\,U_{\rm mag}\,\delta\left(E_{\gamma}-aE^2\right)
$$

Secondary electrons

Secondary synchrotron flux high

unless n^H /Umag is large But then too much 100-MeV flux

Situation relaxes with catastrophic losses by, e.g., escape in the wind.

Summary

Hadronic scenario clearly preferred

CR source spectrum has index s=2.25 (similar to SNRs)

Strong bremsstrahlung flux below 500 MeV → **large N^e /Nⁱ**

Strong secondary synchrotron flux at a few GHz

Catastrophic losses by, e.g., advective escape possible