

First broadband characterization of the TeV blazars Mrk 421 and Mrk 501 with simultaneous X-ray polarization measurements

- $\hbox{ Most luminous persistent objects in the } \\ \gamma\hbox{-ray sky}$
- Potential emitters of ν and cosmic rays

Credit: http://www.astro.princeton.edu/~lilew/

- Most luminous persistent objects in the $\gamma\text{-ray sky}$
- Potential emitters of ν and cosmic rays
- Open questions:

Credit: http://www.astro.princeton.edu/~lilew/

- Most luminous persistent objects in the γ -ray sky
- Potential emitters of ν and cosmic rays
- Open questions:
 - What is radiating?
 - Electrons? Protons?

Credit: http://www.astro.princeton.edu/~lilew/

- Most luminous persistent objects in the γ -ray sky
- Potential emitters of ν and cosmic rays
- Open questions:
 - What is radiating?
 - Electrons? Protons?
 - How are the particles accelerated?
 - Shocks? Magnetic reconnection?

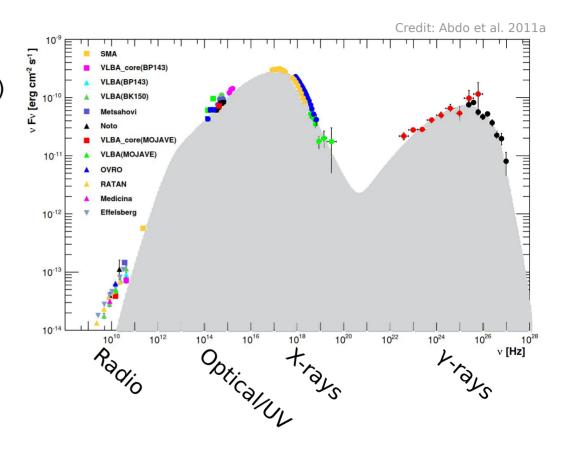
Credit: http://www.astro.princeton.edu/~lilew/

- Most luminous persistent objects in the γ -ray sky
- Potential emitters of ν and cosmic rays
- Open questions:
 - What is radiating?
 - Electrons? Protons?
 - How are the particles accelerated?
 - Shocks? Magnetic reconnection?
 - In which environment?
 - One-zone? Multiple-zones? ...?
 - Where in the jet? (radius, magnetic field, Doppler factor,...)

Credit: http://www.astro.princeton.edu/~lilew/

• Imaging X-ray Polarimetry Explorer (IXPE)

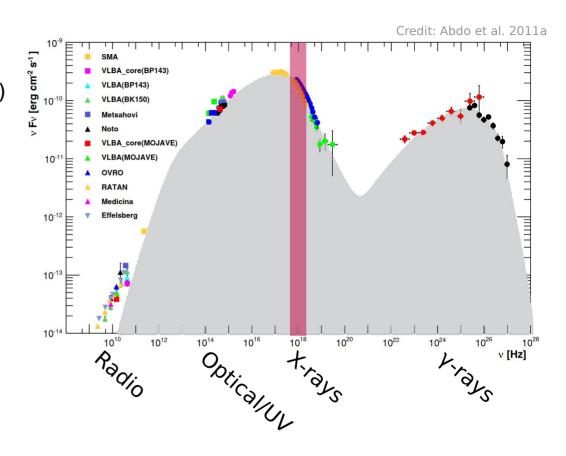
Credit: http://ixpe.iaps.inaf.it/


- X-ray satellite launched Dec 2021
- Energy range: from 2 keV to 8 keV

• Imaging X-ray Polarimetry Explorer (IXPE)

Credit: http://ixpe.iaps.inaf.it/

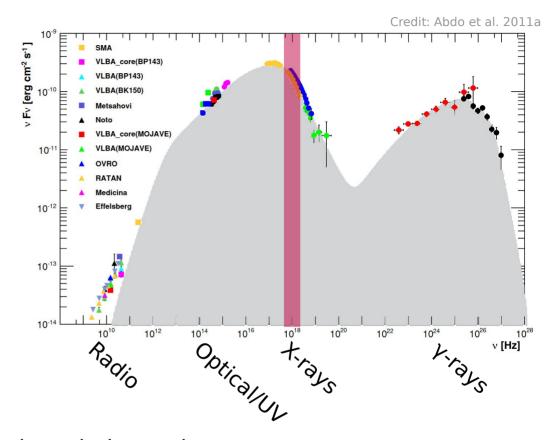
- X-ray satellite launched Dec 2021
- Energy range: from 2 keV to 8 keV

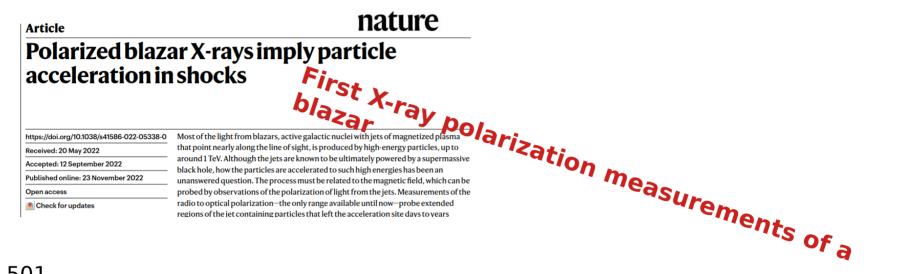


• Imaging X-ray Polarimetry Explorer (IXPE)

Credit: http://ixpe.iaps.inaf.it/

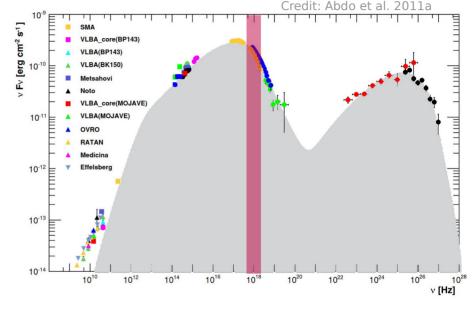
- X-ray satellite launched Dec 2021
- Energy range: from 2 keV to 8 keV

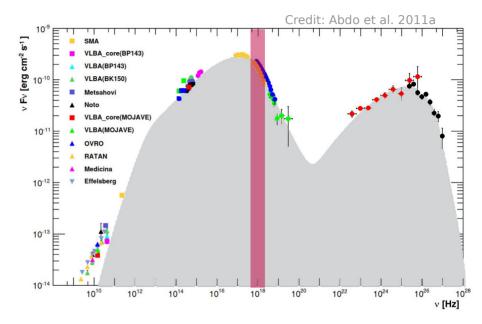



Imaging X-ray Polarimetry Explorer (IXPE)

Credit: http://ixpe.iaps.inaf.it/

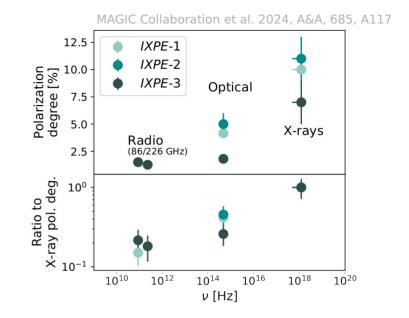
- X-ray satellite launched Dec 2021
- Energy range: from 2 keV to 8 keV
- Polarization measurements
 - → probe the order of the magnetic fields in emission regions
 - → acceleration mechanisms




• Mrk 501

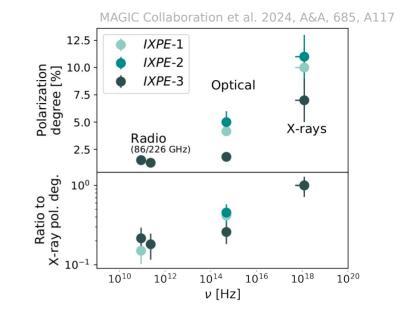
- Mrk 501 & Mrk 421
 - our closest and brightest TeV blazars

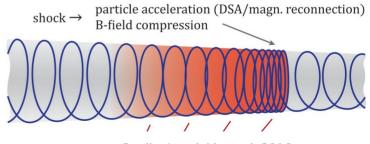
- Mrk 501 & Mrk 421
 - our closest and brightest TeV blazars


- Mrk 501 & Mrk 421
 - our closest and brightest TeV blazars
 - IXPE probes the falling edge of the synchrotron peak emitted by the most energetic particles within the jet

- Mrk 501 & Mrk 421
 - our closest and brightest TeV blazars
 - IXPE probes the falling edge of the synchrotron peak emitted by the most energetic particles within the jet
 - These electrons are also producing the VHE emission via Inverse Compton scattering
 - → MAGIC follow-up in the VHE band together with IXPE

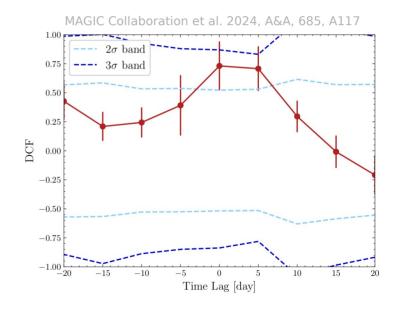
- IXPE pointings in 2022:
 - IXPE-1 & IXPE-2 in March 2022 Liodakis et al. 2022
 - IXPE-3 in July 2022 Lisalda et al. 2024 (submitted)

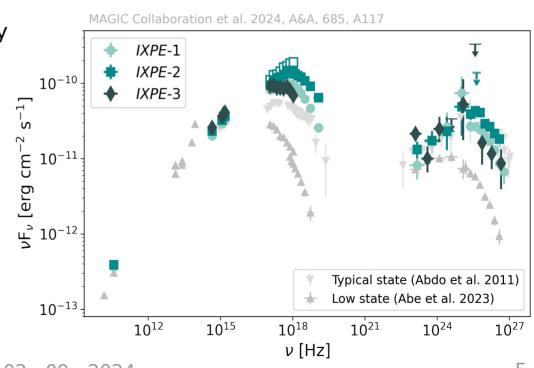

- IXPE pointings in 2022:
 - IXPE-1 & IXPE-2 in March 2022 Liodakis et al. 2022
 - IXPE-3 in July 2022 Lisalda et al. 2024 (submitted)
- Polarization degree:
 - X-ray ~factor 2 higher than in optical
 - Drop in polarization for IXPE-3



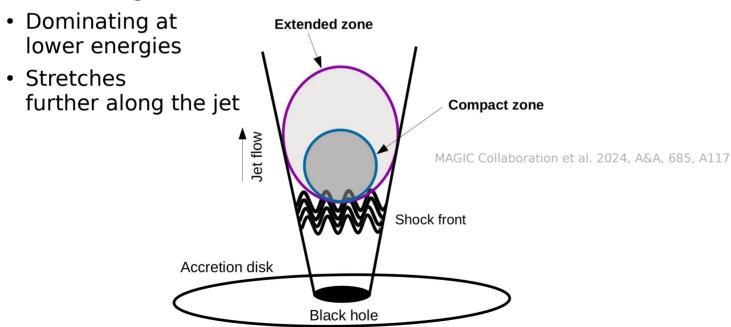
- IXPE pointings in 2022:
 - IXPE-1 & IXPE-2 in March 2022 Liodakis et al. 2022
 - IXPE-3 in July 2022 Lisalda et al. 2024 (submitted)
- Polarization degree:
 - X-ray ~factor 2 higher than in optical
 - Drop in polarization for IXPE-3
- X-ray Polarization angle:
 - In line with optical
 - Parallel to radio jet orientation

- IXPE pointings in 2022:
 - IXPE-1 & IXPE-2 in March 2022 Liodakis et al. 2022
 - IXPE-3 in July 2022 Lisalda et al. 2024 (submitted)
- Polarization degree:
 - X-ray ~factor 2 higher than in optical
 - Drop in polarization for IXPE-3
- X-ray Polarization angle:
 - In line with optical
 - Parallel to radio jet orientation
 - → Shock acceleration in an energy stratified jet

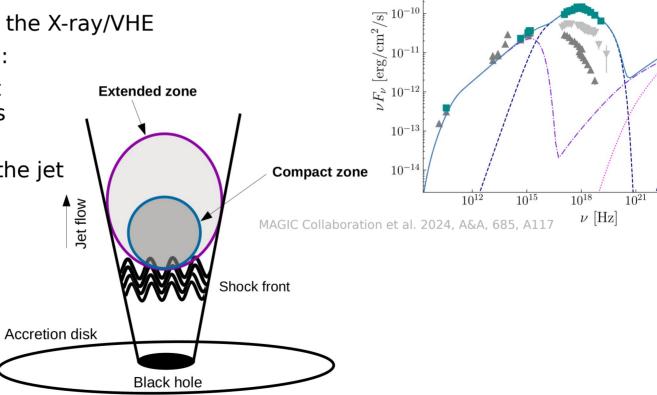



Credit: Angelakis et al. 2016

- Full Multiwavelength (MWL) campaign from March to July 2022
 - For the first time VHE (>0.2 TeV) simultaneous to X-ray polarization


- Full Multiwavelength (MWL) campaign from March to July 2022
 - For the first time VHE (>0.2 TeV) simultaneous to X-ray polarization
- Shows typical MWL behaviors:
 - VHE flux ~average level & low variability
 - Evidence for X-ray to VHE correlation
 - Harder when brighter in X-rays

- Full Multiwavelength (MWL) campaign from March to July 2022
 - For the first time VHE (>0.2 TeV) simultaneous to X-ray polarization
- Shows typical MWL behaviors:
 - VHE flux ~average level & low variability
 - Evidence for X-ray to VHE correlation
 - Harder when brighter in X-rays
- However, spectra show more unusual features:
 - Extreme states for IXPE-1 & 2 $v_{\text{synch}} > 2.4 \times 10^{17} \, \text{Hz} \, (\sim 1 \text{keV})$
 - Shift to lower energies for IXPE-3
 - Low Compton Dominance (CD)


- Theoretical description two zones
 - Compact region:
 - Dominating in the X-ray/VHE
 - Extended region:

- Theoretical description two zones
 - Compact region:
 - Dominating in the X-ray/VHE
 - Extended region:

 Dominating at lower energies

 Stretches further along the jet

 10^{-8}

 10^{-9}

---- Compact zone

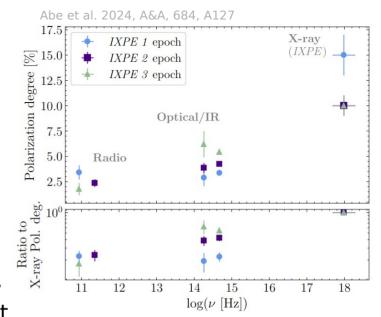
--- Extended zone

Sum

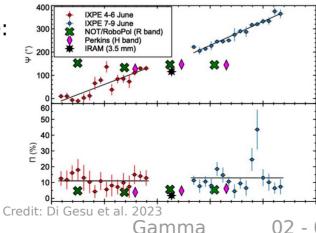
...... Interaction

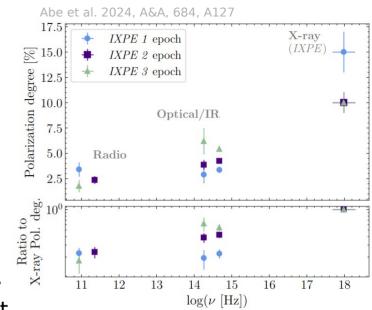
IXPE-2

Typical state (Abdo et al. 2011)


 10^{24}

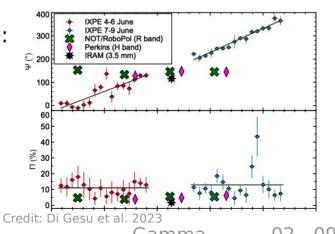
 10^{27}

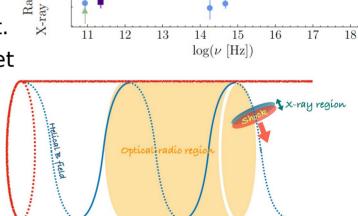

Low state (Abe et al. 2023)


- IXPE pointings in 2022:
 - IXPE-1 in May 2022 Di Gesu et al. 2022
 - IXPE-2 & IXPE-3 in June 2022 Di Gesu et al. 2023

- IXPE pointings in 2022:
 - IXPE-1 in May 2022 Di Gesu et al. 2022
 - IXPE-2 & IXPE-3 in June 2022 Di Gesu et al. 2023
- Polarization degree:
 - Even higher difference between X-ray and optical w.r.t.
 Mrk501 → Shock acceleration in an energy stratified jet

- IXPE pointings in 2022:
 - IXPE-1 in May 2022 Di Gesu et al. 2022
 - IXPE-2 & IXPE-3 in June 2022 Di Gesu et al. 2023
- Polarization degree:
 - Even higher difference between X-ray and optical w.r.t.
 Mrk501 → Shock acceleration in an energy stratified jet
- Polarization angle:
 - Full rotation in June 2022 in X-rays





Lea Heckmann

02 - 09 - 2024

- IXPE pointings in 2022:
 - IXPE-1 in May 2022 Di Gesu et al. 2022
 - IXPE-2 & IXPE-3 in June 2022 Di Gesu et al. 2023
- Polarization degree:
 - Even higher difference between X-ray and optical w.r.t. Mrk501 → Shock acceleration in an energy stratified jet
- Polarization angle:
 - Full rotation in June 2022 in X-rays

Abe et al. 2024, A&A, 684, A127

 ≈ 15.0

7.5

5.0

IXPE 1 epoch

IXPE 2 epoch

IXPE 3 epoch

Radio

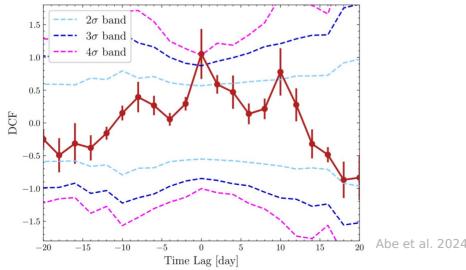
Optical/IR

X-ray

(IXPE)

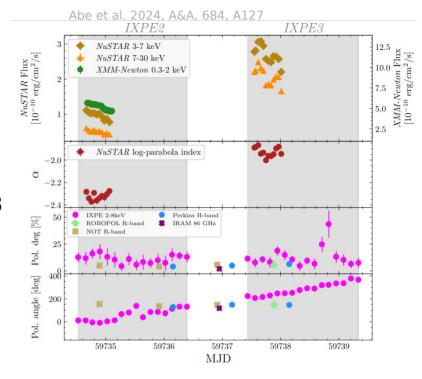
X-ray emission zone on helical path

→ Detached from optical/radio zone

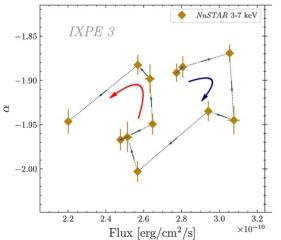

Lea Heckmann 02 - 09 - 2024 Gamma

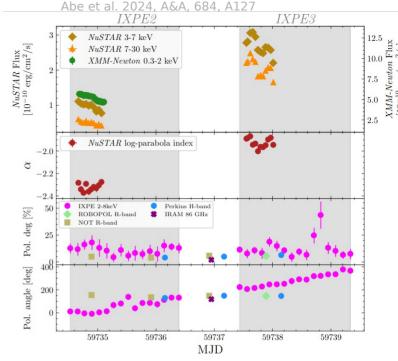
- Full MWL campaign from May to June 2022
 - For the first time VHE (>0.2 TeV) with X-ray polarization
 - Low, average & enhanced states during IXPE-1,-2,-3

- Full MWL campaign from May to June 2022
 - For the first time VHE (>0.2 TeV) with X-ray polarization
 - Low, average & enhanced states during IXPE-1,-2,-3
 - Significant correlation between VHE and X-rays


ightarrow VHE co-spatial to region where rotation is

seen




Abe et al. 2024, A&A, 684, A127

- Full MWL campaign from May to June 2022
 - For the first time VHE (>0.2 TeV) with X-ray polarization
 - Low, average & enhanced states during IXPE-1,-2,-3
 - Significant correlation between VHE and X-rays
 → VHE co-spatial to region where rotation is seen
 - Strong variability in hard X-rays observed by NuSTAR during polarization angle rotation:

- Full MWL campaign from May to June 2022
 - For the first time VHE (>0.2 TeV) with X-ray polarization
 - Low, average & enhanced states during IXPE-1,-2,-3
 - Significant correlation between VHE and X-rays
 → VHE co-spatial to region where rotation is seen
 - Strong variability in hard X-rays observed by NuSTAR during polarization angle rotation:

Evidence of spectral hysteresis:

- First clock-wise (soft lag = LE lags behind HE):
 - Delay by synchrotron cooling
- Then counter clock-wise (hard lag = HE behind LE):
 - Acceleration time scale ~ cooling time scale

Gamma

02 - 09 - 2024

Summary

- Blazars are interesting objects to study due to their potential multi-messenger nature and because they are among the most extreme particle accelerators in our Universe
- IXPE opened a new window allowing us to better constrain their acceleration and emission mechanisms, especially when combining the X-ray polarization results with the full MWL picture:
 - Energy stratified jet with different emission regions
 - Connection between spectral/MWL flux level changes with polarization measurements
 → Constraints on geometry/magnetic field/ electron distributions,...
 - VHE co-spatial to X-ray region → X-ray polarization also provide constraints at the highest energies

Find our two papers here:

Mrk 501

Mrk 421

Thank you for your attention!

