

Deciphering the y-ray emission from Cygnus

Thibault Vieu, L. Härer w/ C. Larkin, B. Reville MPIK, Heidelberg

> *Background: Simulation of Cygnus OB2 after 2 Myr T.Vieu/MPIK*

Introducing the Cygnus X region **2**

Very complex region

Diffuse clouds, HII regions, CO clumps, rims, cavities

Diffuse radio, radio hotspots

Diffuse X-rays

...

Several VHE sources

Several compact star clusters Cygnus OB2 association Cyg X-3 microquasar PSR J2032+4127 pulsar Ɣ-Cyg SNR 10s WR stars

Multilayer structure: complex foreground

3

The Cygnus OB2 stellar cluster association **5**

Right Ascension

Declination

Mrig ht+ $\boldsymbol{\mathsf{N}}$ \circ \mapsto ת

Distance \sim 1.4 kpc 1.65 kpc Age \sim 3-5 Myr Core extension \sim 15 pc

78 O stars 3 off-centred WR stars

 L_{w} ~ 2 x 10³⁸ erg/s

Gas dynamics around an extended association

We put Cygnus OB2 in a (big) numerical box (1000^3 cells) Solve with the PLUTO code on the Max-Planck HPC $($ \sim 10 6 cpu-hour...)

Vieu et al. 2024

6

Gas dynamics around an extended association

We put Cygnus OB2 in a (big) numerical box (1000^3 cells) Solve with the PLUTO code on the Max-Planck HPC $($ \sim 10 6 cpu-hour...)

Vieu et al. 2024

6

Simulation over 2 Myr, including 400 kyr of WR phase

Maximum energy in stellar wind cavities

Adiabatic losses upstream $\epsilon > E_{\text{max}} < V_w B$ R

Super-Alfvénic stellar wind => B << V_w sqrt(4 π Q)

 $=$ > E_{max} << sqrt(2 V_{w} L_{w})/c \sim 100s TeV

Emax < 100s TeV *absolute upper limit for very powerful stars, fast rotator, strongly magnetised (>> kG surface fields)*

Absolute upper limit **independent of conditions downstream**

7

 \geq Same limitations in the case of wind-wind collisions.

 \triangleright In general, particle advection downstream is more limiting: $E_{\text{max}} \le 100$ s TeV

Cygnus OB2 is not so young (3-5 Myr)

It contains 3 WR stars and a pulsar (PSR J2032+4127, 200 kyrs old)

which suggests that **some stars already died.**

With 78 O stars, we expect **about 6 – 8 SN /Myr** In the HIM, a SNR fades after \sim 100 – 200 kyr.

Let's blow a powerful SN in the simulation.

Initial velocity $= 15000$ km/s Explosion energy = 5e51 ergs

Density slice before the explosion

Cygnus OB2 is not so young (3-5 Myr)

It contains 3 WR stars and a pulsar (PSR J2032+4127, 200 kyrs old)

which suggests that **some stars already died.**

With 78 O stars, we expect **about 6 – 8 SN /Myr** In the HIM, a SNR fades after \sim 100 – 200 kyr.

Let's blow a powerful SN in the simulation.

Initial velocity $= 15000$ km/s Explosion energy = 5e51 ergs

Density slice 300 yr after explosion

Cygnus OB2 is not so young (3-5 Myr)

It contains 3 WR stars and a pulsar (PSR J2032+4127, 200 kyrs old)

which suggests that **some stars already died.**

With 78 O stars, we expect **about 6 – 8 SN /Myr** In the HIM, a SNR fades after \sim 100 – 200 kyr.

Let's blow a powerful SN in the simulation.

Initial velocity $= 15000$ km/s Explosion energy = 5e51 ergs

Density slice 1.5 kyr after explosion

Powerful SNR in low density medium near powerful stars

 \vee Longer phase of fast expansion

=> E_{max} < 2 PeV

 \vee Enhanced magnetic fields (\sim 10 μ G) from the stellar winds

40 20.0 35 25 60 35 17.5 30 50 20 30 15.0 25 25 40 12.5 15 20 20 10.0 30 15 10 15 7.5 20 10 10 5.0 $5 -$ 10 5 5 $2.5 0.0$ Ω 4000 6000 8000 10^{-1} 20 25 30 35 2000 15 40 $10⁰$ 10^{1} $10²$ 10^{-1} $10⁰$ 10^{1} 10^{-1} $10⁰$ 10^{1} Shock Velocity [km/s] Radius [pc] Equipartition B field [µG] Max energy RSA [PeV] Max energy [PeV]

Relic ɣ-rays? *Härer+ in prep.* **10**

200 kyr after the explosion, the SNR signature should vanish.

VHE particles still continue to propagate for 100s kyr after their acceleration, reaching the high density clouds beyond the excavated region.

● **The Cygnus region is a very intricate environment**

multiple gas / dust layers over > 1 kpc superposition of ɣ-ray sources, a complete bestiary of extreme objects

- **A past powerful supernova could account for the UHE photons** *other scenarios (stellar winds, cluster wind, wind-wind interactions…) are excluded*
- **At GeV, a leptonic origin is favored**
	- in contrast with long-standing belief

there is no target gas in the vicinity of powerful stars

• BACK-UP

3D reconstruction of CO clouds with distance estimates from Zhang+2024

 $H₂$ Column Density [cm⁻²]

Dust map (differential extinction) from Lallement+2019

Extreme objects in Cygnus-X

Cygnus OB2: a stellar cluster *association*

1e38

erg/s

Note the large extension of the core! Cygnus OB2 is definitively not a "compact" cluster!

Note that the O stars contribute only 40%!

Why Cygnus OB2 cannot expand a cluster WTS?

The stellar winds don't work together but against each other.

Low level of collective interactions

=> A collection of small individual stellar wind termination shocks

Gas dynamics around an extended association

Vieu et al. 2024

Simulation over 2 Myr, including 400 kyr of WR phase

Wind interactions in the inner parsecs

A young powerful cluster… … but extended

Much less efficient wind-wind interactions than for compact clusters

500,0 $-158,1$ $-50,00$

 $-15,81$

5.000

Nevertheless, assuming equipartition (u~vA), the B_{eq} field could be fairly high in the inner region

Cygnus in VHE ɣ-rays

Cygnus in VHE ɣ-rays

The κ Cygnus bubble κ is revealed after masking/removing several sources

 \rightarrow not straightforward to disentangle overlapping extended sources

 \rightarrow introduces uncertainties in the final « Cygnus bubble » ɣ-ray map

 \rightarrow could still be contaminated by ''tails'' of pulsar / ɣ-Cygni hotspots

Morphology: the 1/r myth

Morphology: the 1/r myth

These "1/r" profiles are obtained by choosing the brightest point as the « centre », and then averaging over lineouts.

This averaging does not make sense when the morphology is not symmetric. It will smear out any feature and give an overall decreasing function.

The centre of these "1/r" is not Cygnus $OB2 \Rightarrow$ doesn't fit with a scenario of continuous injection by stellar winds.

Lower energies: the hadronic myth $\frac{1}{2}$

''Cygnus gamma emission must be predominantly hadronic…''

X Because the emission correlates with gas \rightarrow not really...

✗ Because Bremstrahlung component overshoots MeV and X-ray limits...

 \ldots assuming n ~ 30 cm⁻³

- … obviously unrealistic close to powerful O / WR stars
	- \rightarrow plausible range: $0.01 0.1$

