Short GRBs: reaching jet quasi-ballistic regime and afterglow emission

Emma Dreas^{1,2,3}*, Andrea Pavan^{2,4}, Riccardo Ciolfi^{2,4}, Annalisa Celotti^{1,3,5,6}

¹SISSA,² INAF – OAPd,³ INFN Trieste,⁴ INFN Padova,⁵ INAF – OAB,⁶ IFPU Trieste ***edreas@sissa.it**

CONTEXT

- Binary neutron star (BNS) mergers can form compact objects able to launch relativistic jets, presumably responsible for short-GRBs
- After the break out in the post-merger environment, a jet evolves until it reaches a ballistic regime (saturation of velocity and structure)
- Later interaction with the ISM leads to the afterglow signal
- The jet evolution details are imprinted in the electromagnetic emission

Binary neutron star merger

Jet formation

Jet break-out

TOWARDS

- Combining simulations of the merger process, jet l a u n c h i n g a n d propagation up to a quasiballistic regime
- Estimating the dependence of the afterglow emission on the progenitor system and jet injection parameters

STARTING: JET INJECTION

- A magnetized jet, with "ad hoc" initial conditions, was launched in a realistic post-merger environment imported from the BNS merger simulation by [1]
- ▶ The jet was evolved in a spherical grid with the PLUTO code [2] for ~ 3 s, following its angular dependent structure and energetics

REACHING A QUASI-BALLISTIC REGIME

• <u>Aim of this work</u>: Follow the jet evolution without loss of resolution up to a quasi-ballistic regime with PLUTO to provide the input for the afterglow emission estimate

• <u>Method</u>: Re-map the output of the early evolution onto a Cartesian grid with uniform cells, generally

OUTLOOK

- Systematic application to a set of short GRB jet initial parameters, linking the final jet structure with injection and break-out conditions
- Use the outputs in semi-analytic afterglow models to produce lightcurves and compare with observations (e.g. GRB 170817A)

Angle dependent multi-band jet afterglow light curves

applicable to similar numerical simulations

REFERENCES

Ciolfi (2020), MNRAS Lett. 495, L66; [2] Mignone et al. (2007), ApJS 170, 228M
Pavan et al. (2021), MNRAS 506, 3483 524, 260;

[4] Pavan et al. (2023), MNRAS; 524, 260; [5] Dreas et al. (2024), A&A, submitted

