Paolo Giommi

Irmamento

A new-concept platform to discover and analyse multi-frequency/multi-messengers astrophysical sources with discovery algorithms, machine learning tools, and Al.

HOME DATA ACCESS RESOURCES MEDIA FEEDBACK FIRMAMENTO PAPER 🗹 MMDC 🗹

https://firmamento.hosting.nyu.edu

CENTER FOR ASTROPHYSICS AND SPACE SCIENCE

irmamento

A tool to discover and work with multifrequency astronomical sources

Learn more $\stackrel{\scriptstyle \sim}{\scriptstyle \sim}$

Developed at NYU Abu Dhabi under the leadership of Paolo Giommi

Firmamento AI

جامعة نيويورك أبوظي **NYU ABU DHABI**

Blazars

Blazars are very special cosmic laboratories that involve matter falling onto supermassive black holes and the ejection of narrow jets of particles that move at a velocity that is close to the speed of light.

Learn more »

VOU-Blazars - SED error circles map for *firmamento*

J2000 ~

Q

0

12 56 11.256 -05 47 21.12

Based on "Aladin Lite" developed at CDS, Strasbourg Observatory, France

Imaging domain Multi-frequency surveys

Example showing how most imaging surveys at radio, IR, Optical, UV, X-ray and y-ray surveys are provided in firmamento

R

+

ALADIN

-- eRASS1 --O Swift-XRT O XMM-PN O Chandra O RASS Swift-BAT(14-20keV) O MAXI-GSC O Fermi-LAT

VOU-Blazars - SED error circles map for *firmamento*

J2000

V

12 56 11.256 -05 47 21.12

Based on "Aladin Lite" developed at CDS, Strasbourg Observatory, France

Imaging domain Multi-frequency surveys

Example showing how most imaging surveys at radio, IR, Optical, UV, X-ray and y-ray surveys are provided in firmamento

....

OU-Blazars - SED error circles map for Jirmamento Based on "Aladin Lite" developed at CDS, Strasbourg Observatory, France

J2000

Q

 \odot

Imaging domain Multi-frequency surveys

Example showing how most imaging surveys at radio, IR, Optical, UV, X-ray and y-ray surveys are provided in firmamento

NVSS (1.4 GHz) VLASS (3GHz) Epoch 1 2.2 3.1 VCSS1 (340 MHz)
J TGSSADR (150 MHz)
RACS
Low-887 MHz O Mid-13
AllWISE
unWISE color
2MASS
Spitzer/IRAC134
Herschel/color

OpticalUV surveys

O DSS2
PanSTARRS-DR1
O SDSS9
O DECaLS-DR5
O ZTF-DR7
SkyMapper-DR1
O GALEXGR6_7
Swift-UVOT
O M2 O W1 O W2

X-ray/y-ray surveys

- eRASS1
- 🔘 Color 🕦 0.2-2.3 keV 🔵 2.3-5 keV
- Swift-XRT
- O XMM-PN
- Chandra
- O RASS
- Swift-BAT(14-20keV)
- MAXI-GSC
- O Fermi-LAT

Source in 4LAC catalog Counterpart proposed by Firmamento

X-ray error-circle

Error regions of all types can be plotted on multi-frequency images.

The energy domain

The energy domain is crucial for astrophysical data interpretation. The firmamento multi-frequency data engine is VOU_BlazarsV2.24: an improved version of VOU_BLazars (Chang et al 2020 A&C, 30, 100350) specifically developed for Firmamento

Searching 66 catalogs (1 / 66) WISH352 : NO SOURCES FOUND (2 / 66) LoTSS : NO SOURCES FOUND 66) VLSSR : SUCCESS -- Lane et al. 2014, MNRAS, 440,327 (3)66) GB87 : NO SOURCES FOUND (4 /66) AT20G : SUCCESS -- Murphy et al. 2010, MNRAS, 402, 2403 (5/ 66) NORTH20 : SUCCESS -- White and Becker, 1992, ApJS, 79, 331 (6/ 66) PCCS30 : SUCCESS -- The Planck Collaboration 2018, A&A, 619, A94 66) PCCS545 : SUCCESS --(8/ 66) PCCS857 : SUCCESS --(9/ (10 / 66) PCNT : SUCCESS -- The Planck Collaboration 2018, A&A, 619, A94 (11 / 66) UNWISE : SUCCESS -- Schlafly et al. 2019, ApJS, 240, 30 (12 / 66) H-ATLAS-DR1 : NO SOURCES FOUND (13 / 66) H-ATLAS-DR2NGP : NO SOURCES FOUND (14 / 66) H-ATLAS-DR2SGP : NO SOURCES FOUND (15 / 66) ALMA : SUCCESS -- Bonato et al. 2019, MNRAS, 485, 1188 (16 / 66) 2MASS : SUCCESS -- Skrutskie et al. 2006, AJ, 131, 1163 (17 / 66) AKARIBSC : SUCCESS -- Yamamura et al. 2010, VizieR, II, 298 (18 / 66) TGSS150 : SUCCESS -- Intema et al. 2017, A&A, 598, A781

VOU_BlazarsV2.24 generates likely the best sampled and richest SEDs on the WEB

VOU_BlazarV2.24 downloads, homogenises, de-reddens, and combines multi-frequency data from about 100 remote and local catalogues and databases.

All domains in the same page

Tables and samples

Go to r	row number.	<							Search by name.	×
#	name	ra	dec	fov	major	minor	angle	pick		
1	SHBL J001355-185406	3.4835	-18.90181	0.1	0.05	0.05	0	pick		
2	KUV_00311-1938	8.3931	-19.35914	0.1	0.05	0.05	0	pick		
3	S2_0109+22	18.024	22.74411	0.1	0.05	0.05	0	pick		
4	RGB J0136+391	24.135	9 39.09978	0.1	0.05	0.05	0	pick		
5	RGB J0152+0171	28.165	1.78811	0.1	0.05	0.05	0	pick		
6	TXS_0210+515_	33.574	71 51.74778	0.1	0.05	0.05	0	pick		
7	S3_0218+35	35.272	75 35.93714	0.1	0.05	0.05	0	pick		
8	3C_66A	35.665	43.0355	0.1	0.05	0.05	0	pick		
9	1ES_0229+200	38.202	54 20.28814	0.1	0.05	0.05	0	pick		
10	1RXS J023832.6-311658	39.635	37 -31.28283	0.1	0.05	0.05	0	pick		

Or, get a random source from the list: Get 🗹

Firmamento provides many tables of astronomical objects. Users can also upload tables

Download: (csv file) 📩

The error region identifier

Firmamento tool to identify counterparts in the error region of X-ray, y-ray and neutrino sources

#	name	ra	dec	possible SED type	redshift	pick
1	N.A.	0.86360	-15.78486	LBL (blazar)	0.508	pick

This slide illustrates the case of the identification of the counterpart of a γ -ray error region of a few arc-minutes size.

Based on the following parameters aox,airx,airo,aro,arx,aw1w2,arg,nu_peak,x_en_slope,gamma_sp_index,host_galaxy_sed,host_galaxy_image,blue_bump,Xray_extended

The error region identifier

Firmamento tool to identify counterparts in the error region of X-ray, y-ray and neutrino sources

Based on the following parameters aox,airx,airo,aro,arx,aw1w2,arg,nu_peak,x_en_slope,gamma_sp_index,host_galaxy_sed,host_galaxy_image,blue_bump,Xray_extended

The error region identifier

Firmamento tool to identify counterparts in the error region of X-ray, y-ray and neutrino sources

Based on the following parameters aox,airx,airo,aro,arx,aw1w2,arg,nu_peak,x_en_slope,gamma_sp_index,host_galaxy_sed,host_galaxy_image,blue_bump,Xray_extended

A IceCube neutrino track error region with size larger than one degree

VHE detectability estimation

TeV detectability script

Python **tev_detectability.py** Log(v_peak) Log(vFv_peak) redshift

Python tev_detectability.py 16.0 -11.18 0.22

Probability of detection with current IACTs Probability of detection in a CTAO medium exposure Probability of detection in a CTAO exposure

Firmamento can estimate the probability of detection of a IBL or HBL blazar at VHE energies (E > 200 GeV) based on vFv_peak, v_peak and redshift. The method is explained in Giommi et al. 2024

Two on-going Firmamento projects

- A reanalysis of the Fermi 4FGL-DR4/4LAC catalogues - The BlazaR eRASS1 (BReRASS) survey of X-ray selected blazars

The Firmamento error region identifier tool was run on

- all the 5,060 Fermi 4FGL-DR4 γ -ray sources with |b| > 10- >1,500 eRASS1 radio matching X-ray sources (in selected areas) + eFEDS

The output was loaded to Firmamento as tables and all sources were individually checked using Firmamento by some collaborators (including an international team of students)

Parameters like nu_peak and nu_Fnu peak were calculated using BLAST and W-Peak. These parameters, together with redshift were used to estimate the expected VHE detectability

The most common case: our proposed counterpart (source 1 CRATES..) coincides with the 4FGL-DR4 counterpart, represented by the yellow circle

and Firmamento finds a reliable counterpart

Case where the y-ray source is unassociated in 4FGL-DR4/4LAC

Preliminary results

Main enhancements over 4FGL-DR4/4LAC

- 430 new identifications of previously unassociated sources
- v_peak and vFv_peak machine estimation for > 3,730 blazars
- Predictions for VHE detection of IBL and HBL blazars
 Current generation of IACTS 175.1 sources
 CTAO medium exposure 523.5 sources
 CTAO deep exposure 1102.8 sources

The table with the results will be published on Firmamento

							VI	HE detectab	ility	M	onte Carlo)
							E E	xpectations ((%)		Survey	
#	Name	Counterpart	ra	dec	nu_peak	nu_Fnu_peak	р	р	р	Detected	Detected	Det
		name					current	CTAO	CTAO	current	CTAO	СТА
							IACTS	medium exp.	deep ex	p. IACTS	med. exp.	deep
Z	4FGL J0541.1-4854	3HSPJ054106.9-485410	85.2788	-48.9029	16.2	-12.5	0.0	0.0	7.0	no	no	
Z	4FGL J0541.4-7334	PKS 0542-735	85.4595	-73.5373	12.4	-12.2	-	3 — 1	-	_		
Z	4FGL J0541.6-0541	5BZQ J0541-0541	85.4094	-5.6971	12.6	-12.0	-	-	-	-	_	
Z	4FGL J0542.8-3458	WISEAJ054254.31-3459	85.7263	-34.9985	14.3	-12.5	0.0	0.0	7.0	no	no	
Z	4FGL J0542.9-0913	N.A.	85.7332	-9.2232	12.6	-12.0	—	-	-	-		
L	4FGL J0543.2+8238	S5 0532+82	85.9143	82.6417	12.5	-12.6	-	-	— 7	-	-	
L	4FGL J0543.9-5531	3HSPJ054357.0-553207	85.989	-55.5361	16.4	-10.9	95.0	95.0	95.0	yes	yes	У
L	4FGL J0545.0+0613c	J054340.10+062553	85.9208	6.4315	-99.0	-99.0	-	-	— y	-	_	
Z	4FGL J0546.9-2206	3HSPJ054656.8-220457	86.7366	-22.0826	16.1	-12.3	0.0	7.0	33.0	no	no	У
Z	4FGL J0548.5-5218	CRATESJ054828-521829	87.1253	-52.308	14.1	-12.4	0.0	0.0	7.0	no	no	
Z	4FGL J0550.3-5733	5BZQ_J0550-5732	87.5399	-57.5401	12.9	-11.5	-	—		Η.		
L	4FGL J0550.5-3216	3HSPJ055040.6-321616	87.669	-32.2713	17.6	-10.9	95.0	95.0	95.0	yes	yes	У
L	4FGL J0551.0-1622	CRATESJ055050-162127	87.7136	-16.3639	12.8	-12.6	-	—	-	-	-	
L	4FGL J0553.5-2034	3HSPJ055333.1-203418	88.388	-20.5719	16.2	-11.7	7.0	33.0	95.0	no	no	У

Example of a section of the table displaying Firmamento results, including various parameters and the estimated probability of detection at VHE energies.(E>=200 GeV) with current IACTS, a medium CTAO exposure (factor 3 better than current IACTS) and a deep CTAO exposure (factor 10 better than current IACTS). The last three columns give the detection (as "yes" or "no") in a simulated survey based on the probabilities of the previous three columns. A "-" means that the source has Log(v_peak) lower than 13.5

Monte Carlo simulation of hypothetical VHE surveys

Hammer-Aitoff plot in Galactic coordinates plotting the sources detectable by current IATCS (red)

Monte Carlo simulation of hypothetical VHE surveys

Hammer-Aitoff plot in Galactic coordinates plotting the sources detectable in a medium CTAO extragalactic survey (blue)

Monte Carlo simulation of hypothetical VHE surveys

Hammer-Aitoff plot in Galactic coordinates plotting the sources detectable in a hypothetical deep full-sky (|b| > 10) CTAO survey (green)

Led by a team based at the Brera Observatory, Milan

1	Name	ra	dec	Туре	CatalogName	redshift	Spect/phot	nu_peak	last nu_	/-peak nu_	nu_p	Accepted	
7	1eRASSJ010402.1-72020	16.00175	-72.03503	HBL	J010401-720206								
8	1eRASSJ010516.9-58261	16.32031	-58.43757	Seyfert	N.A.	0.026							
9	J010750.4-364317	16.95959	-36.72254	cluster?	J010750-364321								
10	1eRASSJ011109.6-47273	17.79062	-47.46286	Seyfert	N.A.								
11	J011501.5-340026	18.75717	-34.00756	HBL	3HSPJ011501.7-34002	0.482	spec		17.5		-11.8		
12	J011555.4-274431	18.98124	-27.74304	HBL	3HSPJ011555.5-274431			18	16.9		-12		
13	J011811.2-265805	19.54657	-26.96943	Seyfert	J011811-265813								
14	J012031.5-270126	20.13192	-27.02353	IBL	5BZB J0120-2701	0		13.9	14.4		-11.1		
15	J012237.4-264646	20.65603	-26.77909	QSO/Seyfert	RXSJ01226-2646	0.417							
16	J012338.1-231059	20.90975	-23.18294	HBL	3HSPJ012338.3-23105	0.404		18	17.1		-11.5	yes	
17	1eRASSJ012345.7-58481	20.94068	-58.80578	radio-AGN	N.A.	0.046							
18	J012354.2-350356	20.97654	-35.06546	Xray-UNCL	N.A.	0.019							
19	J012910.8-214156	22.29421	-21.69944	Seyfert	IRAS01267-2157	0.047			16.1		-11.5		

A wide range of astronomical objects can be counterpart of eRASS1 X-ray sources. Firmamento provides preliminary identifications that can be studied in full detail for confirmation or rejection. BReRASS is the subsample of confirmed blazars of all types.

The BReRASS survey

CONTENUTO PER GLI ABBONATI PREMIUM

Quattro ragazzi del liceo Morin di Mestre scoprono le nuove "sorgenti dell'universo"

Brando Mazzon, Laura Fronte, Francesco Metruccio e Nicolò Munaretto

Instagram ~

 ∇

Mi piace: 78 zaiaufficiale 🐼 BRAVISSIMI I NOSTRI VENETI!

Brando Mazzon, Niccolò Munaretto, Francesco Metruccio e Laura Fronte, quattro studenti del Liceo scientifico Morin di Venezia che nel 2022 hanno fatto un percorso con il Dipartimento di Fisica dell'Università di Padova, sono volati alla New York University of Abu Dhabi per presentare il loro studio sullo spazio, le onde e l'energia.

