

What we know about ultra-high-energy cosmic rays after 20 years of operation of the Pierre Auger Observatory

Lorenzo Caccianiga, for the **Pierre Auger Collaboration**

Gamma and **neutrino** emissions are strictly related to **cosmic rays** At the highest energies the **flux** of cosmic rays is **extremely low** (less than 1 per km² per century) \rightarrow need for huge detectors... and patience

Gamma and **neutrino** emissions are strictly related to **cosmic rays** At the highest energies the **flux** of cosmic rays is **extremely low** (less than 1 per km² per century) \rightarrow need for huge detectors... and patience The Pierre Auger Observatory has a

detection area of 3000 km2 and started taking data in **2004**, 20 years ago.

20 years is a long time

Gamma and **neutrino** emissions are strictly related to **cosmic rays** At the highest energies the **flux** of cosmic rays is **extremely low** (less than 1 per km² per century) \rightarrow need for huge detectors... and patience The Pierre Auger Observatory has a detection

area of 3000 km2 and started taking data in 2004, 20 years ago.

20 years is a long time

Gamma and **neutrino** emissions are strictly related to **cosmic rays** At the highest energies the **flux** of cosmic rays is **extremely low** (less than 1 per km² per century) \rightarrow need for huge detectors... and patience The Pierre Auger Observatory has a detection

area of 3000 km² and started taking data in 2004, 20 years ago.

20 years is a long time

.Where does the spectrum end? Is there a GZK cutoff? . Primary nature (composition)? Nuclei ? Protons ? Gamma rays ? Neutrinos ? Or.........? . What is the source of UHECR? **Bottom-Up or Top-Down scenario? Arrival direction distribution** Search for departure from isotropy - point sources

July 2007 - ASPERA prepatory meeting, Paris

Andreas Haungs, wg 3

5

The Pierre Auger Collaboration

The Pierre Auger Observatory

Located in **Argentina**, in the Pampa Amarilla, around 1400 m of altitude

Operating since 2004, full array completed in 2008.

Largest detector of UHECR

energy range 10¹⁷⁽¹⁶⁾-10²⁰ eV

7

The Pierre Auger Observatory

Located in **Argentina**, in the Pampa Amarilla, around 1400 m of altitude

Operating since 2004, full array completed in 2008.

Largest detector of UHECR

energy range 10¹⁷⁽¹⁶⁾-10²⁰ eV

SD - Array of 1660 water cherenkov detectors (100% duty cycle) FD - 27 fluorescence telescopes (10-15% DC)

8

The Pierre Auger Observatory… upgraded

Between 2019 and 2023 Auger underwent a huge upgrade: - New electronics for SD stations, with a new (smaller) PMT and a scintillator and a radio antenna

- Extended FD operation

 $2004 - 2021$ Auger "phase 1"

 $2021 \rightarrow 2023$ Transition phase

 $2024 - 2035$ Auger Prime (Phase 2)

Cosmic rays, how many of them?

Energy spectrum estimated from 5 measurements **three from SD** – precisely defined exposure, large statistics **two from FD** – nearly calorimetric measurement of energy

Auger Coll., Phys.Rev.D102 (2020) 062005 Auger Coll., Phys.Rev.Lett. 125 (2020) 121106 Auger Coll., Eur. Phys. J. C 81 (2021) 966 V.Novotny, PoS(ICRC2021) 324 A.Brichetto, PoS(ICRC2023) 398

Exposure >80,000 km2 sr yr >920,000 events

Cosmic rays, how many of them?

Energy spectrum estimated from 5 measurements **three from SD** – precisely defined exposure, large statistics **two from FD** – nearly calorimetric measurement of energy

Auger Coll., Phys.Rev.D102 (2020) 062005 Auger Coll., Phys.Rev.Lett. 125 (2020) 121106 Auger Coll., Eur. Phys. J. C 81 (2021) 966 V.Novotny, PoS(ICRC2021) 324 A.Brichetto, PoS(ICRC2023) 398

Exposure >80,000 km2 sr yr >920,000 events

- We **confirm** the existence of a suppression starting around 50 EeV
- Unprecedented precision in measuring the position of the different features
- Brand new features like the **instep**!
- Extension to **very low energy** (10 PeV) thanks to dedicated FD detectors (HEAT) and **Cherenkov** yr^{-1} eV $^{-1}$ **measurements**

Cosmic rays, what are they?

Depth of the shower maximum measured with FD, the most direct but with only ∽ **10% duty cycle Shower characteristics at ground measured with SD and fitted to reconstruct Xmax - recently achieved (also with ML), 100% duty cycle**

Radio footprint (RD, 100% duty cycle) completely independent and nicely agree with the "standard" ones

Cosmic rays, what are they?

Depth of the shower maximum measured with FD, the most direct but with only ∽ **10% duty cycle Shower characteristics at ground measured with SD and fitted to reconstruct Xmax - recently achieved (also with ML), 100% duty cycle**

Radio footprint (RD, 100% duty cycle) completely independent and nicely agree with the "standard" ones

- Composition gets **lighter** up to few 1018 eV and **heavier** above this energy
- At the **highest energies**, we can exclude a **large fraction of protons**
- 13 - Converting this in **actual mass** (thus charge**)** requires **hadronic interaction models**, tuned at much **lower energies** (LHC) - So far, "mass" information **not** used **event-by event**

The Pierre Auger Observatory… a multi-purpose experiment!

Things that I don't have time to discuss:

- **- The Muon puzzle: why do we observe less muons than predicted in hadronic interaction models?** Auger Coll., PRD91 (2015) 032003+059901 Auger Coll., PRL 126 (2021) 152002
- **- Particle physics results: p-air cross section and shower development Auger Coll.,** Phys.Rev.D109 (2024) 102001
- **- Atmospheric studies with the Observatory: ELVES and other magical creatures** Earth Space Sci. 7 (2020) e2019EA000582
- **- Search for Lorenz invariance violation in air showers and CR propagation:** Auger Coll., JCAP01 (2022) 023 C.Trimarelli (Auger Coll.), UHECR2022
- **- Search for Super-Heavy Dark Matter** Auger coll., PRD 109 (2024) L081101; Auger coll., PRL 130 (2023) 061001; Auger coll., PRD 107 (2023) 042002
- **What I will focus on:**
	- **- Arrival direction studies: large scale, small/intermediate scale, search for neutrons**
	- **- Search for neutrinos:** with the Observatory we can detect UHE neutrinos better than most experiments
	- **- Search for gamma:** we can try and distinguish showers induced by photons from the dominant hadronic background

Where do cosmic rays come from? - Large scale

- Well established **dipolar feature** observed **above 8 EeV** (> 6 σ) Science 357 (2017) 1266-1270
- Points **away from the Galactic Center**, suggesting **extragalactic origin**
- **No** significant **dipole** observed in the **4-8 EeV energy bin**, despite much larger statistics
- **No** significant **higher multipole** found in any energy bin

Where do cosmic rays come from? - Large scale

- Well established **dipolar feature** observed **above 8 EeV** (> 6 σ) Science 357 (2017) 1266-1270
- Points **away from the Galactic Center**, suggesting **extragalactic origin**
- **No** significant **dipole** observed in the **4-8 EeV energy bin**, despite much larger statistics
- **No** significant **higher multipole** found in any energy bin

All plots and results for large scale analyses are from the new work: Large-scale cosmic ray anisotropies with 19 years of data from the Pierre Auger Observatory, arXiv:2408.05292 submitted to ApJ 16

Where do cosmic rays come from? - Large scale

- **The phase shift around 3-4 EeV** may be a suggestion for where the **transition between galactic and extragalactic** happens
- we found no significant dipole below 8 EeV

arXiv:2408.05292 submitted to ApJ

Results of a scan in energy threshold (from 32 EeV) and angle (1°-30°) around the position of CenA \rightarrow **4** σ **post trial excess** in a 27 \degree top-hat region for events above 38 EeV

Search for correlation with **extragalactic catalogs** using a **likelihood analysis**, considering probability maps built weighting objects by their relative fux in the corresponding e.m. band and an attenuation due to their different distances

Free parameters: Energy threshold, fisher smearing angle and anisotropic fraction.

G. Golup for the Auger coll. PoS(ICRC2023)252 - Astrophys. J. 935 (2022) 170

Search for correlation with extragalactic catalogs using a likelihood analysis, considering probability maps built weighting objects by their relative fux in the corresponding e.m. band and an attenuation due to their different dist Free parameters: $\frac{1}{4}$ and $\frac{1}{4}$ rs **20E** - Centaurus region - E_{th} = 38 EeV Cumulated excess 15I 25 Cata region 20 80 100 120 140 -3.2σ $All \;$ 60 Exposure ≥ 32 EeV [10³ km² yr sr] Starl $\frac{1}{2}$
All $\frac{1}{2}$ $-3.8_σ$ 15 3.5σ 10 195% C.L Jette -3.3σ 10 Centa 20 60 80 100 120 140 40 100 120 140 60 80 Pierre Auger Obs. exposure ≥ 32 EeV [10³ km² yr sr] Exposure \geq 32 EeV [10³ km² yr sr]

Search for correlation with extragalactic catalogs using a likelihood analysis, considering probability maps built weighting objects by their relative fux in the corresponding e.m. band and an attenuation due to their different distances

Free parameters: Energy threshold, fisher smearing angle and anisotropic fraction.

21 We also searched for correlations between **UHECRs** observed by **Auger** and **TA** and **UHE neutrinos** from **IceCube** and **ANTARES**, found none. Astrophys. J. 934 (2022) 164

Fitting all we know: a combine fit of spectrum, mass and arrival directions

With some assumption, we can try and fit together the information from different observables. → fit to **spectrum**, **shower depths** & **energy-dependent arrival directions** (no coherent field)

- **- AGNs disfavored**
- **SBG model describes data very well**
	- \rightarrow 4.5 σ significance compared to model with only homogeneously distributed sources
	- best-fit: \sim 20% from SBGs at 40 EeV, ~20° blurring for proton at 10 EeV
- **Centaurus region** well described by local source at ~4 Mpc

Auger Coll., JCAP 01 (2024) 022

Where do cosmic ray come from? Neutrons

Neutrons can be produced near the **source**, they **decay** but they can travel **9.2 kpc** per **EeV of energy**

- we search for excesses at the scale of **Auger's angular resolution** (which varies… generally ~1°)
- first results published in 2014, now being updated with higher sky coverage and lower threshold energy
- **12 target sets** resulting in a total of **888 sources** with a declination **up to +45°**. Of those, 166 are within a distance ≤ 1 kpc and have a declination up to 20 $^{\circ}$ (suitable for search below EeV).
	- **Millisecond Pulsars**
	- **y-ray Pulsars**
	- **Low Mass X-ray Binaries** \bullet
	- **High Mass X-ray Binaries** \bullet
	- y TeV emitters Pulsar Wind Nebulae
	- y TeV emitters Other
- y TeV emitters UNIDentified \bullet
- Microquasars
- **Magnetars** \bullet
- **LHAASO PeVatrons**
- **Crab Nebula**
- **Galactic Center**

Where do cosmic ray come from? Neutrons

No significant excess found, we can put **upper limits**

POS

 \rightarrow here you can see the UL for the most significant source in each catalog

Where do cosmic ray come from? Neutrons

No significant excess found, we can put **upper limits**

 \rightarrow here you can see the UL for the most significant source in each catalog

A paper is in preparation, hopefully out by the end of the year.

Following that, we plan on doing:

- a **blind search on all sky**
- a **correlation with Galactic Plane**
- 25 - a **space-time correlation** with variable sources

not only cosmic rays: neutrino detection

- No candidates found: upper limits put
- best sensitivity around 10¹⁸ eV
- practically no background \rightarrow limited by exposure

Energy (eV)

- Constraints on models assuming proton composition

not only cosmic rays: neutrino detection

- Lett. 850 (2017) L35
- But also from TXS 0506+056 Astrophys. J. 902 (2020) 105

not only cosmic rays: gamma detection

- Showers induced by gammas are basically purely electromagnetic, so we can try to distinguish them!

not only cosmic rays: gamma detection

- Showers induced by gammas are basically purely electromagnetic, so we can try to distinguish them!

Thanks to A. Castellina

not only cosmic rays: gamma detection

We can put limits from **less than 100 PeV** to **100 EeV**

Also these results goes **against a pure proton composition at the highest energies**

We also searched for gammas from **target sources** Astrophys. J. Lett. 837 (2017) L25 and in **space-time coincidence with GW events** Auger Coll., Astrop.J.952 (2023) 91

Public data

<https://opendata.auger.org/>contains **10% of our data** down to a **nearly-raw level**

- Not only CR, but also **environmental** and **space-weather** data
- Citable via a zenodo DOI<https://zenodo.org/records/10488964>
- Includes a detailed description of the **100 most energetic events** (not only 10% of them!) Astrophys. J. Suppl. S. 264 (2023) 50
- Includes some ipython **notebooks** for standard analyses, for outreach, but not only!

In addition to this, we released the **energy** and **arrival directions** of all* our **2635 events above 32 EeV**, together with the code used to analyse them: <https://zenodo.org/records/6759610> *until the end of 2020

Conclusions and outlook

- The **Pierre Auger Observatory** has gathered an unprecedented dataset of cosmic rays above **few hundreds of PeV and up to more than 150 EeV**
- Our data suggests that the majority of UHECR sources **is extragalactic above few EeV**
- **No UHE photon or neutrino observed** so far, limits on cosmogenic production of these particles were placed… we hope to have a signal in the future!
- With **Auger Prime**, from now **until 2035** better mass discrimination will improve arrival direction studies and the search for neutral particles
- Even before, the application of **new analyses** to Phase 1 data (including ML) will give us the possibility of making **anisotropy studies** only on the "**lightest**" UHECR (nice results coming soon!)
- Even without mass estimation, **we will confirm** or exclude some results such as **the centaurus region excess** in a few years **just with new statistics** $\frac{1}{32}$

Backup Slides

Where do cosmic ray come from?

Figure 3. (a) Map with the directions of the 3D dipole for different energy bins, in Galactic coordinates. The contours of equal probability per unit solid angle, marginalized over the dipole amplitude, that contain the 68% CL range are shown. (b) The evolution of the dipole amplitude with energy, for the four energy bins considered $(4-8, 8-16, 16-32, \geq 32)$ EeV.

Where do cosmic ray come from?

G. Golup for the Auger coll. PoS(ICRC2023)252 - Astrophys. J. 935 (2022) 170 G. Golup for the Auger coll. PoS(ICRC2023)252 - Astrophys. J. 935 (2022) 170

What about the northern sky?

 \Box confirmation of the Centaurus region as most significant excess (4.00 post-trial), extended to lower energies (20 EeV) \Box no hints for excesses in the TA "spots" with data of comparable size \rightarrow at variance with the claim of TA that the declination dependence of the UHECR energy spectrum is due to the presence of excesses in particular regions of the Northern sky

Large scale anisotropies

We can see the whole sky: better reconstruction of large scales structures no assumption needed on higher ℓ when measuring the dipole and quadrupole amplitudes (unlike in Auger-only or TA-only studies)

Fitting all we know: a combine fit of spectrum, mass and arrival directions

With some assumption, we can try and fit together the information from different observables. nearby source candidates [5] + homogeneous background sources

- active galactic nuclei (AGNs), flux weighted by χ -ray flux + bg with m=5
- starburst galaxies (SBGs) + bg with m=3.4 (star formation rate)
- nearby radio galaxy Centaurus A + different bgs

Targeted search for photons

Class	No.	\mathcal{P}_{w}	\mathcal{P}	R.A. $(^\circ)$	Decl. (°)	Obs	Exp	Exposure (km ² yr)	Flux UL n^{-2} yr ⁻¹) (km^-)	E -flux UL 1^{-2} s ⁻¹) $(eV \text{ cm}^{-1})$	\boldsymbol{p}	p^{\cdot}
msec PSRs	67	0.57	0.14	286.4	4.0	$5(7, 9^*)$	1.433	236.1	0.043	0.077	0.010	0.476
γ -ray PSRs	75	0.97	0.98	312.8	-8.5	$6(8, 10^*)$	1.857	248.1	0.045	0.080	0.007	0.431
LMXB	87	0.13	0.74	258.1	-40.8	$6(8, 11^*)$	2.144	233.9	0.046	0.083	0.014	0.718
HMXB	48	0.33	0.84	285.9	-3.2	$4(7, 9^*)$	1.460	235.2	0.036	0.066	0.040	0.856
H.E.S.S. PWN	17	0.92	0.90	266.8	-28.2	$4(8, 10^*)$	2.045	211.4	0.038	0.068	0.104	0.845
H.E.S.S. other	16	0.12	0.52	258.3	-39.8	$5(8, 10^*)$	2.103	233.3	0.040	0.072	0.042	0.493
H.E.S.S. UNID	20	0.79	0.45	257.1	-41.1	$6(8, 10^*)$	2.142	239.2	0.045	0.081	0.014	0.251
Microquasars	13	0.29	0.48	267.0	-28.1	$5(8, 10^*)$	2.044	211.4	0.045	0.080	0.037	0.391
Magnetars	16	0.30	0.89	257.2	-40.1	$4(8, 10^*)$	2.122	253.8	0.031	0.056	0.115	0.858
Gal. Center		0.59	0.59	266.4	-29.0	$2(8, 8^*)$	2.048	218.9	0.024	0.044	0.471	0.471
LMC	3	0.52	0.62	84.4	-69.2	$2(8, 9^*)$	2.015	180.3	0.030	0.053	0.463	0.845
Cen A		0.31	0.31	201.4	-43.0	$3(8, 8^*)$	1.948	214.1	0.031	0.056	0.221	0.221

Table 1 Combined Unweighted Probabilities $\mathcal P$ and Weighted Probabilities $\mathcal P_w$ for the 12 Target Sets

Note. In addition, information on the most significant target from each target set is given. The number of observed (Obs) and expected (Exp) events and the corresponding exposure are shown. The numbers in brackets in the observed number of events column indicate the numbers of events needed for a 3σ observation unpenalized and penalized (*). Upper limits (UL) are computed at the 95% confidence level. The last two columns indicate the p-value unpenalized (p) and penalized (p^*) . Due to the discrete distribution of p-values arising in isotropic simulations, P can differ from p in the sets that contain only a single target.

Targeted search for photons

