PHOTO-HADRONIC PAIR CREATION IN MAGNETOSHPERIC CURRENT SHEETS OF ACCRETING BLACK HOLES

Do the e^{\pm} pairs generated by protonphoton interactions play an important part in the formation of the corona?

Motivated by observational data and Particle-In-Cell simulations, we set up a model describing the corona:

Spherical corona with radius of $R \sim a$ few r_g

Broken PL proton energy density distribution, with $\mathbf{u_p} = \eta_{\mathbf{p}} \mathbf{u_B}$

WE FIND...

D, KARAVOLA¹, M. PETROPOULOU^{1,2} 1: National and Kapodistrian University of Athens, 2: Institute of Accelerating Systems & Applications

PL photon energy density distribution, with $\mathbf{u}_{\mathbf{X}} = \eta_{\mathbf{X}} \mathbf{u}_{\mathbf{B}}$

Magnetic field energy density: $\mathbf{u_B}=\mathbf{B^2}/8\pi$ with $\mathbf{B} = \left(\mathbf{L}_{\mathbf{X}}/\eta_{\mathbf{X}}\mathbf{c}\beta_{\mathbf{rec}}\mathbf{R}^{2}\right)^{1}$

CONTACT INFORMATION

E-mails D.K.: dkaravola@phys.uoa.gr M.P.: mpetropo@phys.uoa.gr

1. An analytical formula describing the total cool pair number density $(n_{e,cool})$ produced by photomeson and Bethe-Heitler interactions that is verified by numerical simulations:

• $n_{e,cool} \propto L_X^2/R^3$ for $L_X \ll L_{Edd}$ • $n_{e,cool} \propto L_X/R^2$ else

2. Such pairs are a dominant component in the corona environment when the fraction corona luminosity (L_X) over the Eddington one is >0.01.

3. The fraction of the neutrino luminosity (L_{ν}) produced is proportional to L_X/L_{Edd} (Eddington ratio) when the Eddington ratio is less than 0.01 but becomes almost 0.1 otherv

Thank You!

