The region surrounding 1LHAASO J1928+1746u

Antonio Tutone INAF/IASF Palermo

1st VHEGAM Meeting, Bologna, 15/01/2024

The LHAASO catalogue

Cao+2021

- 12 Sources
- KM2A, no WCDA
- E>25 TeV

Cao+2023

- 90 Sources
- KM2A + WCDA
- E>1 TeV

Good observational candidates

5σ with LST1 (E>1TeV) < 50 h

Table from Cao+2023

Source name	Components	α_{2000}	δ_{2000}	$\sigma_{p,95,stat}$	r_{39}	TS	N_0	T	S_{100}	Asso. $(Sep.[^{\circ}])$
1LHAASO J1928+1746u	WCDA	292.14	17.78	0.07	0.17±0.02	196.0	0.79±0.05	2.22±0.05	\	2HWC J1928+177 (0.01)
	KM2A	292.17	17.89	0.07	< 0.16	127.7	0.72 ± 0.07	$3.10{\pm}0.12$	44.9	
1LHAASO J1929+1846u*	WCDA	292.34	18.77	0.10	$0.49 {\pm} 0.02$	416.2	$2.48{\pm}0.11$	$2.37{\pm}0.04$		SNR G054.1+00.3 (0.29)
	KM2A	292.04	18.97	0.08	< 0.21	130.0	0.64±0.06	3.11±0.12	26.0	

SNR G54.1+0.3: a PWN at a distance of ~6.5 kpc hosting a young, energetic pulsar, PSR J1930+1852

2HWC J1928+177: coincident with PSR J1928+1746, is older and less energetic than PSR J1930+1852. No PWN has been observed

An interesting region

The region encompasses diverse astrophysical objects, exhibiting complex γ-ray, X-ray, radio, and infrared signatures.

Features significant γ-ray emissions, primarily from sources like 3HWC J1930+188, 3HWC J1928+178, and HAWC J1932+192.

The region has not been studied much at VHE, only ~40 hrs by VERITAS and HESS

Complex mechanisms behind the observed gamma-ray emissions.

Association with a Molecular Cloud (?)

VLA (1.4 GHz) WSRT (327 MHz) LOFAR (144 MHz)

Green Circles - HII White Circles - SNR

1LHAASO J1928+1746u

3HWC J1928+178 is at 0.01° and it is extended (0.18°). H.E.S.S. confirmed a detection with $> 5\sigma$ (Abdalla+2021) Different hypotheses for the origin of the γ -ray emission :

- 1. $e\pm$ from the pulsar started to cool and diffuse away from it, producing γ rays via IC scattering on ambient photons
- 2. cosmic-ray protons produced by the pulsar interacted with a nearby molecular cloud and produced γ rays via proton–proton interactions
- 3. combination of point 1 & 2
- 4. It may also be in a transitional phase between a classical PWN and a TeV halo

50h proposal to study the source with LST1 (Me, A. D'Aì, D. Maniadakis...)

Backup

Component	Observations		Parameter	Value	Comments and references			
Pulsar PSR J1930+1852	Radio Arecibo		period P (ms) P E (erg s ⁻¹) age (kyr) surf. B field (G)	$ \begin{array}{c} 137 \\ 7.5 \times 10^{-13} \\ 12 \times 10^{36} \\ 2.9 \\ 1.0 \times 10^{13} \end{array} $	Cordes et al. (2006)			
	·		F (0.3-10 keV) index	$\begin{array}{c} 2.1 \times 10^{-12} \\ -1.44 \pm 0.04 \end{array}$				
	— X-ray	Chandra	size (°) F (0.3–10 keV) index	0.03×0.02 1.18×10^{-12} -2.2 ± 0.04	Pulsar, ring, jet, and diffuse elongated PWN Temim et al. (2010			
G54.1+0.3	-	Effelsberg	size (°)	0.025	Reich et al. (1985)			
	Radio	FCRAO	distance (kpc)	6.2	Association with a molecular cloud - Leahy et al. (2008)			
		Fermi						
		VERITAS	index flux 1-100 TeV	-2.18 ± 0.2 $(3.31 \pm 1.47) \times 10^{-12}$	Detection of a point-like source consistant with the VERITAS measurements - Abeysekara et al. (2018)			
	γ -ray	H.E.S.S.	size (°) index flux 1–100 TeV	0.02 ± 0.025 -2.59 ± 0.26 $(1.28 \pm 0.55) \times 10^{-12}$	H.E.S.S. Collaboration et al. (2018)			
		HAWC	index flux 1–100 TeV	-2.76 ± 0.14 $(4.48 \pm 0.43) \times 10^{-12}$	Albert et al. (2020)			
Shell SNR G54.1+0.3	radio	VLA	size (°)	0.1	Gelfand et al. (2015)			
	Sub-mm	Herschel	dust mass (M_{\odot}) dust temperature (K)	0.08-0.9 27-44	Rho et al. (2018)			
	IR	Spitzer	progenitor's mass (M_{\odot}) size $(^{\circ})$	15-27 0.4	Temim et al. (2017)			
	X-ray	XMM Suzaku	size (°) age (kyr)	~0.1 1.8–2.4	Bocchino et al. (2010)			

Characteristics of the Components Associated with 3HWC J1930+188 - Fluxes are in erg cm $^{-2}$ s $^{-1}$

Characteristics of the Components Associated with 3HWC J1928+178 - Fluxes are in erg cm⁻² s⁻¹

Component

Pulsar

Radio

Observations

Arecibo

period P (ms) $\dot{E} \text{ (erg s}^{-1}\text{)}$

Parameter

 1.6×10^{36} 82 4.3 9.6×10^{11}

Value

68.7 1.32×10^{-14}

Cordes et al. (2006)

Comments

age (kyr) PSR J1928+1746 distance (kpc) surf. B field (G) index -2.23**EGRET** Hartman et al. (1999) flux > 100 MeV (ph cm $^{-2}$ s $^{-1}$) 157×10^{-8} γ-ray -2.3 ± 0.07 index HAWC Albert et al. (2020) $(4.77 \pm 0.32) \times 10^{-12}$ flux 1-100 TeV

PWN