

OUTLINE

- Overview on fundamental and exotic physics studies with IACTs
- Dark matter searches in VHE γ -rays with IACTs
- IACT fundamental physics studies with γ -rays
- IACT fundamental physics studies beyond γ -rays
- Summary

Overview on fundamental and exotic physics studies with IACTs

Overview on fundamental and exotic physics studies

• IACTs are a powerful tool for a range of astroparticle, fundamental and exotic physics topics.

Overview on fundamental and exotic physics studies

• IACTs are a powerful tool for a range of astroparticle, fundamental and exotic physics topics.

Dark matter searches in VHE γ -rays with IACTs

- Dark matter (DM) is the major component of the Universe matter content (~22% of the total energy budget);
- its existence only indirectly inferred so far from several astrophysical/cosmological observations.

hectio

- Paradigm of massive particle DM (WIMPs) characteristics:
 - large masses (from cosmology)
 - small cross sections
 with baryonic matter
 (from direct detection
 and production
 experiments)
- Cherenkov telescopes look for production of VHE photons from WIMP self-interaction (annihilation or decay).

7

γ-ray fluxes expected from
 WIMP interactions:

$$\frac{d\Phi_{\rm ann}}{dE_{\gamma}} = \frac{\langle \sigma_{\rm ann} v \rangle}{8\pi m_{\chi}^2} \sum_{i} BR_{i} \frac{dN_{\gamma}^{(i)}}{dE_{\gamma}} J(\Delta \Omega)$$
$$\frac{d\Phi_{\rm dec}}{dE_{\gamma}} = \frac{1}{4\pi m_{\chi}} \sum_{i} \Gamma_{i} \frac{dN_{\gamma}^{(i)}}{dE_{\gamma}} D(\Delta \Omega)$$

• The quantities that determine flux intensities are the so-called astrophysical factors *J* and *D*:

$$J(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{\text{l.o.s.}} \rho_{\text{DM}}^2(\ell; \Omega) d\ell$$
$$D(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{\text{l.o.s.}} \rho_{\text{DM}}(\ell; \Omega) d\ell$$

- Several methods available to compute astrophysical factors for WIMP DM halos:
 - empirical models of velocity dispersion
 - likelihood maximization of dynamic equations
 - semi-analytical integrations
 - Bayesian analysis of halo properties
 - MCMC Jeans analysis of halo kinematics

$$\frac{1}{n_*} \left[\frac{d}{dr} \left(n_* \overline{v_r^2} \right) \right] + \frac{2}{r} \beta_{\text{ani}}(r) \overline{v_r^2} = -\frac{G \left[M_{\text{DM}}(r) + M_*(r) \right]}{r^2}$$

•None of them completely free of biases that can affect the DM amount determination, and thus the final estimates of the expected γ -ray WIMP DM signal.

• Main targets for indirect WIMP DM searches:

Galactic Centre (GC) and halo

Galaxy clusters

Dwarf spheroidal galaxies (dSphs)

Dark clumps

• Main targets for indirect WIMP DM searches:

Galactic Centre (GC) and halo

Galaxy clusters

Dwarf spheroidal galaxies (dSphs)

Dark clumps

- Several dSphs already known around the Milky Way, divided in two main categories:
 - classical

(~100 to ~1000 member stars)

ultra-faint

(<100 member stars)

 Many more to be discovered in the future thanks to telescope technology and performance improvements (e.g., the "Vera C. Rubin" Observatory).

• Current status of WIMP DM searches in VHE γ -rays:

- For particle masses >1 TeV, the thermal-relic limit for WIMP annihilation x-sections is not reached yet => room for improvement with new IACTs.
- In the case of WIMP decay, particle lifetimes >10²⁷ s already probed at multi-TeV masses.

Open issues:

1. GC — exact shape of the Milky Way's DM density profile still unknown (cored or cuspy?) => bias in expected signal intensity.

2. GC — high amount of emission from potential contaminants (diffuse bkg, unresolved pt-like sources, Fermi bubbles) => difficult data analysis.

3. dSphs — challenging determination of dSph astrophysical factors (especially for faint targets) => biases in expected signal intensity.

4. dSphs — still missing appropriate general treatment of measurement biases (triaxiality, tidal disruption degree) => biases in expected signal intensity.

5. Clusters — still uncertain estimate of subhalo contribution to DM amount of galaxy clusters => biases in expected signal intensity (DM annihilation only).

- Another possibility: axion-like particles (ALPs).
- ALPs are (almost) massless and can convert from/to photons in a magnetic field:

$$P_{\rm osc} = \sin^2 (2\theta) \sin^2 \left[\frac{g_{a\gamma} Bs}{2} \sqrt{1 + \left(\frac{\mathscr{E}}{E_{\gamma}}\right)^2} \right]$$

Such oscillations may distort
 γ-ray spectra:

$$F_{a}\left(E_{\gamma}\right) = \left[1 - \frac{\mathscr{A}}{1 + \left(\mathscr{E}/E_{\gamma}\right)^{2}}\right]F_{0}\left(E_{\gamma}\right)$$

• Photon-ALP coupling can also lead to "photon resurrection" effects (VHE γ -rays "ignoring" the EBL absorption by being transformed to ALPs and vice versa):

• Main targets for ALP searches:

 γ -ray bursts (GRBs)

Active galactic nuclei (AGN)

• Main targets for ALP searches:

 γ -ray bursts (GRBs)

- Potentially nearby
- Transient
- Directional

Active galactic nuclei (AGN)

- Hard spectra extended to multi-TeV energies
 - Subject to EBL absorption

• Current status of ALP searches in VHE γ -rays:

- ALP DM expected to have particle masses between $\sim 10^{-10}$ eV and $\sim 10^{-7}$ eV with coupling constants $< 10^{-12}$ GeV⁻¹ => room for improvement with new IACTs.
- "Photon resurrection" induced by ALP-photon coupling => big field to be explored with new IACTs.

IACT fundamental physics studies with γ-rays

- Violations of the Lorentz symmetries lie at the heart of the unification between quantum mechanics and general relativity (quantum gravity, QG);
- Lorentz invariance violation (LIV) naturally arises from introducing the Planck length as an additional constant independent of the reference system.

$$\Delta t_n \simeq \pm \frac{n+1}{2} \left(\frac{E_2^n - E_1^n}{E_{\text{QG}}^n} \right) D_n(z)$$

- Violations of the Lorentz symmetries lie at the heart of the unification between quantum mechanics and general relativity (quantum gravity, QG);
- Lorentz invariance violation (LIV) naturally arises from introducing the Planck length as an additional constant independent of the reference system.

$$\Delta t_n \simeq \pm \frac{n+1}{2} \left(\frac{E_2^n - E_1^n}{E_{\text{QG}}^n} \right) D_n(z)$$

Time variability

High energ

Long distance

20

• Main targets for LIV studies:

Pulsars

γ -ray bursts (GRBs)

Active galactic nuclei (AGN)

• Main targets for LIV studies:

Pulsars

- Time variability (a lot)
- High energy
- Short distance

γ -ray bursts (GRBs)

- Time variability
 (prompt emission)
- Not so high energy (EBL absorption)
- Long distance

Active galactic nuclei (AGN)

- Time variability
 (flaring activity)
- Not so high energy (EBL absorption)
- Long distance

• Current status of LIV studies in VHE γ -rays:

Martínez-Huerta+ 2020

BO	mon	+ 2	022
		~ ~	

redshift	linear	quadratic
Z	[GeV]	[GeV]
0.05	$2.03 imes 10^{18}$	1.61×10^{11}
0.10	$1.43 imes 10^{18}$	$2.21 imes 10^{11}$
0.15	$1.24 imes 10^{18}$	1.23×10^{11}

	Power-law flux	20-TeV cut-off	10-TeV cut-off		
	5σ (3σ) [GeV]	$5\sigma~(3\sigma)~[\text{GeV}]$	$5\sigma~(3\sigma)~[{ m GeV}]$		
n = 1	$4.5 \times 10^{20} \ (1.4 \times 10^{21})$	$1.8 imes 10^{19} \; (3.2 imes 10^{19})$	$4.1 \times 10^{18} \ (9.1 \times 10^{18})$		
n=2	$5.9 \times 10^{12} \ (1.2 \times 10^{13})$	$5.1 \times 10^{11} \ (9.8 \times 10^{11})$	$2.7 \times 10^{11} \ (4.2 \times 10^{11})$		
Fairbairn+ 2014					

CTA Cons. 2016

- Best IACT constraints to QG energies of >6×10¹⁸ GeV (linear case) => already very close to the Planck scale (~10¹⁹ GeV).
- Perspectives with next-gen IACTs depend on target class, distance and spectral pars (shape, cut-off).
- Combination with other exotic physics (e.g., photon resurrection with ALPs) to be explored.

- Magnetic fields exist in macroscopic astrophysical objects (galaxies, galaxy clusters), and can be dragged to intergalactic scales through diffusive processes.
- Most of intergalactic magnetic field (IGMF) models assume preexisting seeds of either astrophysical or cosmological origin.

See also Paolo's talk!

- IGMF characterized by
 - field strength;
 - correlation length.
- Physical process:
 - reprocessing TeV
 photons in the GeV
 band.
- Measurable effects:
 - extended emission;
 - echo emission;
 - spectral features.

Batista & Saveliev 2021

see also Paolo's talk!

- IGMF characterized by
 - field strength;
 - correlation length.
- Physical process:
 - reprocessing TeV
 photons in the GeV
 band.
- Measurable effects:
 - extended emission;
 - echo emission;
 - spectral features.

$$\frac{\Delta t}{0^4 \text{ s}} \simeq K_{\lambda D} \left(1 - \tau^{-1}\right) (1+z)^{\delta_{\lambda D}} \left(\frac{E_{\gamma}}{0.1 \text{ TeV}}\right)^{\alpha_{\lambda D}} \left(\frac{B}{10^{-18} \text{ G}}\right)^2 \left[1 + \left(\frac{\lambda_B}{10^3 \text{ pc}} - 1\right) H_{\lambda D}\right]$$

see also Paolo's talk!

• Main targets for IGMF studies:

 γ -ray bursts (GRBs)

Active galactic nuclei (AGN)

See also Paolo's talk!

• Main targets for IGMF studies:

 γ -ray bursts (GRBs)

Active galactic nuclei (AGN)

Transient sources
 (disentanglement between prompt & (possibility cascade emission)
 Transient & directional
 See also Paolo's to See als

Steady sources
 (possibility to detect the extended emission)
 Difficulty to disentangle intrinsic & cascade
 emission in the GeV domain
 Paolo's talk;

26

• Current status of IGMF studies in VHE γ -rays:

see also Paolo's talk!

- IGMF parameter space rapidly closing due to the intense research activity in this field.
- GRBs kicking in the game (e.g. GRB190114C and especially GRB221009A) => potential best targets for new IACTs.
- Observe extended cascade emission from AGN with improved IACT angular resolution.

IACT fundamental physics studies beyond γ-rays

IACT fundamental physics studies beyond γ **-rays**

- The origin of cosmic rays (CRs) is still one of the most important open questions in astrophysics;
- Supernova remnants (SNRs) can account for CRs up to ~3 PeV; for higher energies, AGN mechanisms are required.

IACT fundamental physics studies beyond γ **-rays**

- The origin of cosmic rays (CRs) is still one of the most important open questions in astrophysics;
- Supernova remnants (SNRs) can account for CRs up to ~3 PeV; for higher energies, AGN mechanisms are required.

IACT fundamental physics studies beyond γ-rays

- Main techniques for CR studies:
 - standard analysis with different reconstruction techniques;
 - direct Cherenkov (DC)
 light detection with
 cut-based or template
 fitting analysis.
- Choice of targets does not matter for hadrons, and for leptons only requirement is to be free of γ -ray sources (ZA < 35° for both).

H.E.S.S. Coll. 2007

IACT fundamental physics studies beyond γ-rays

- Main techniques for CR studies:
 - standard analysis with different reconstruction techniques;
 - direct Cherenkov (DC)
 light detection with
 cut-based or template
 fitting analysis.
- Choice of targets does not matter for hadrons, and for leptons only requirement is to be free of γ -ray sources (ZA < 35° for both).

IACT fundamental physics studies beyond γ **-rays**

HESS QGSJET (Z>24)

Ichimura et al. (Z>25)

O HESS SIBYLL (Z>24)

JACEE (Z>17) RUNJOB (Z=26)

² sr⁻¹ s⁻¹ TeV^{1.5}] 0

Φ E^{2.5} [m⁻²

 10^{-2}

• Status of CR studies in VHE:

Protons

Electrons

HEGRA Coll. 1999

1 10 10² 10³ _{E[TeV]}

VERITAS COLL. 2018a VERITAS COLL. 2018b

H.E.S.S. Coll. 2008

32

IACT fundamental physics studies beyond γ **-rays**

- CR studies with Cherenkov light detection underway since decades.
- Other than the most abundant CRs (protons, electrons, iron), other species can be studied (Cherenkov light $\propto Z^2$).

Summary

Summary

- Many topics of astroparticle/fundamental/exotic physics still to be explored in detail with Cherenkov observations;
- several open aspects to be investigated for better understanding of the physical aspects and improvement of the analysis techniques;
- big fields still open at reach of next-generation IACTs.

