

Finanziato dall'Unione europea NextGenerationEU

Gamma-ray Burst science with LST

Davide Miceli INFN Padova

16/01/2024

1st VHEgam meeting, Bologna

Emission in Gamma-ray Bursts

Emission in Gamma-ray Bursts

Prompt phase

Afterglow phase

Afterglow: the external forward shock scenario

Decelerating blastwave interacting with the circumburst external medium

Jet structure and dynamics

Relativistic shock acceleration

External circumburst medium

Afterglow: the external forward shock scenario Relativistic shocks in GRB afterglow

Afterglow: the external forward shock scenario Radiative output: Synchrotron radiation

Afterglow: the external forward shock scenario

Open issue: the HE and VHE radiation HE emission

- Almost consistent with synchrotron radiation (synchrotron burnoff limit)
- No spectral cut-off identified (shock microphysics uncertainties, non-uniform magnetic fields)

Open issue: the HE and VHE radiation VHE emission Possible radiation processes

• Synchrotron emission from e⁻

Limited by burnoff limit, microphysics conditions, particle acceleration assumptions

• Synchrotron emission from *p*

Requires high radiative efficiency

• Synchrotron Self Compton (SSC) emission

Natural candidate (Sari et al., 2001; Nakar et al. 2009)

VHE emission

Shaping the VHE spectrum

Shaping the VHE spectrum: yy absorption

Gamma-ray Bursts in the VHE domain Cherenkov telescope observations: only upper limits until 2019

Gamma-ray Bursts in the VHE domain

	T_{90} s	$E_{\gamma,iso} \ \mathbf{erg}$	Z	T _{delay} s	E _{range} TeV	IACT (sign.)
160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1 σ)
180720B	48.9	$6.0 imes10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 σ)
190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 σ)
201015A	9.78	$1.1 imes 10^{50}$	0.42	33	0.14	MAGIC (3.5 σ)
201216C	48	$4.7 imes10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)
221009A	289	1.0 x 10 ⁵⁵	0.151	0-2400	0.5-18	LHAASO

Adapted from Miceli & Nava, 2022

- Long GRB
- $E_{\gamma,iso} \sim 2.5 \times 10^{53} \text{ erg}$
- z = 0.42

MAGIC detection info:

- T_{delay} ~ 57 s
- > 50 σ in 20 minutes
- detection up to 40 min
- 0.3 1 TeV energy range
- moon conditions and Zd>50

GRB190114C

GRB190114C

GRB190114C

Observed No γ - γ opacity EBL-deabsorbed

MAGIC soft spectrum:

- Klein-Nishina
- γ - γ internal absorption

GRB afterglow parameters: $E_k \gtrsim 3 \times 10^{53}$ erg $\varepsilon_e \approx 0.05$ -0.15 $\varepsilon_b \approx 0.05$ -1 $\times 10^{-3}$ $n \approx 0.5$ -5 cm⁻³ $p \approx 2.4$ -2.6

MWL LIGHT CURVES

 Sync+SSC external forward scenario

- Two modeling displayed:
 - X to TeV (solid lines)
 - Radio-optical (dotted lines)
 - SSC contribution (dashed lines)
- Indication of time-dependent afterglow parameters

GRB190114C

GRB180720B

- Long GRB
- $E_{\gamma,iso} \sim 6.0 \times 10^{53} \text{ erg}$
- z = 0.654

H.E.S.S. detection info:

- Tdelay ~ 10 hrs
- > 5.3σ in 2 hrs
- 0.1 0.44 TeV energy range

GRB180720B

Wang et al.,2019

GRB190829A

- Long GRB
- E_{y,iso} ~ 2.0 x 10⁵⁰ erg
- z = 0.079

H.E.S.S. detection info:

- T_{obs} ~ 4.3 55.9 hrs
- 21.7σ, 5.5σ, 2.4σ,
- 0.18 3.3 TeV energy range

Finanziato dall'Unione europea NextGenerationEU

GRB190829A

Finanziato dall'Unione europea NextGenerationEU

GRB190829A

one 4 ° Istruzion**27**e Ricerca

GRB201216C

- Long GRB
- $E_{\gamma,iso} \sim 4.7 \times 10^{53} \text{ erg}$
- z = 1.1

MAGIC detection info:

- Tdelay ~ 56 s
- 6σ in 20 minutes
- 0.07 0.2 TeV energy range

GRB201216C

Parameter	Range	Best fit value		
$E_{\rm k}$ [erg]	$10^{50} - 10^{54}$	4×10^{53}		
θ_{jet} [degrees]	0.5 – 3	1		
Γ_0	80-300	180		
$n_0 [\mathrm{cm}^{-3}] (s=0)$	$10^{-2} - 10^2$	-		
$A_{\star} (s = 2)$	$10^{-2} - 10^2$	2.5×10^{-2}		
р	2.05 - 2.6	2.1		
$\epsilon_{ m e}$	0.01-0.9	0.08		
$\epsilon_{ m B}$	$10^{-7} - 10^{-1}$	2.5×10^{-3}		

Strong indication in favour of a wind-like medium

GRB221009A

Energy flux [erg cm⁻² s⁻¹] 10-5 10-6 10-7 10⁻⁸ d _{2.6} **B** Spectral Index 2.4 2.2 10³ 10 10^{2} Time since T* [s] LHAASO Coll. et al., 2023

- Long GRB: The BOAT
- $E_{\gamma,iso} > 3 \times 10^{54} \text{ erg}$
- z = 0.15

LHAASO detection info:

- > 250σ in 230 3000 s
- 0.3 13 TeV energy range

ne 4 º Istruzion³⁰e Ricerca

GRB221009A

LHAASO Coll. et al., 2023

Missione 4 • Istruzion³¹e Ricerca

Population of GRBs at VHE: What we thought vs what we discovered

IACT Capabilities

"Mandatory" requirements:

- low zenith angles
- dark nights
- small delays
- low *z*
- highly energetic events

```
GRB190114C: zenith >55°, Moon conditions
GRB160821B: Moon conditions
GRB180720B, GRB190829A: T_{delay} \sim hrs/days
GRB201216C: z = 1.1
GRB190829A, GRB201015A, GRB160821B: E_{v.iso} \sim 10^{49} - 10^{50} erg
```

Missione 4 º Istruzion**32**e Ricerca

Population of GRBs at VHE

- Broadband intrinsic properties:
 - span more than 3 orders of magnitude in $E_{\gamma,iso}$
 - Span 2 orders of magnitude in terms of L_{VHE}
 - ranging in redshift between 0.079–1.1
- X-ray TeV connection:
 - similar fluxes and decay slopes
 - similar amount of radiated power
- Data modeling:
 - SSC suggested (not conclusive)
 - no preferences on constant/wind-like medium
 - $\epsilon_e \sim 0.1, \epsilon_B \sim 10^{\text{-5}}\text{--}10^{\text{-3}}, \xi < 1$

Population of GRBs at VHE

	E_k erg	ϵ_{e}		ϵ_B	n cm ⁻³	р		ξ_e	$ heta_j$ rad
Hess Coll. (SSC)	2.0×10^{50}	0.91	5.9 – 2	7.7×10^{-2}	1.	2.06-2.1	15	1.	/
Hess Coll. (Svnc)	2.0×10^{50}	0.03-0	.08	≈1	1.	2.1 2.01		1.	,
Salafia + 2021	$1.2 - 4.4 \times 10$	53 0.01-0	.06 1.2 - 0	$5.0 imes 10^{-5}$	0.12-0.58		<	$< 6.5 \times 10^{-2}$	0.25-0.2
Zhang + 2021	9.8×10^{51}	0.39	0.39 8.7		0.09	2.1		0.34	0.1
-		E_k	ϵ_{e}	ϵ_B		n	р	ξe	
-		erg		_	cn	n ⁻³			
	MAGIC Coll.	$\gtrsim 3 imes 10^{53}$	0.05-0.15	$\begin{array}{c} 0.05\text{-}1\times10^{-3} \\ 4\times10^{-5} \\ 9\times10^{-4} \end{array}$	-3 0.	³ 0.5-5 2 0.3 1		.6 1	
	Wang + 2019	$6 imes 10^{53}$	0.07		C			1	
	Asano + 2020	10^{54}	0.06					0.3	
	Asano + 2020	10 ⁵⁴	0.08	$1.2 imes 10^{-3}$	³ 0.1 (wind)	2.35	5 0.3	
	Joshi + 2021	$4 imes 10^{54}$	0.03	0.012	2×10^{-1}	² (wind)	2.2	1	
	Derishev + 2021	3×10^{53}	0.1	$2 - 6 \times 10^{-1}$	-3	2	2.5	1	
		E_k erg	$\log(\epsilon_e)$	$\log(\epsilon_B)$	log(n) cm ⁻³	р	ξe	θ_j rad	
	MAGIC Coll.	$10^{51} - 10^{52}$	[-1;-0.1]	[-5.5 ; -0.8]	[-4.85;-0.24]	2.2-2.35	1	/	
	Troja + 2019 Zhang + 2021 (SSC)	$10^{50} - 10^{51}$ 3×10^{51} 2×10^{51}	[-0.39 ; -0.05] -0.52	[-3.1 ; -1.1] -5	[-4.2 ; -1.7] -1.3	2.26-2.39	1 (0.5	0.15	

Missione 4 º Istruzion**34**º Ricerca

Population of GRBs at VHE

Nava, 2021

Missione 4 • Istruzion³⁵e Ricerca

LST in the game: open issues (a not exhaustive list...)

- Are we looking at a sub-class of GRBs? Is it VHE emission universal?
- Low energy threshold (E < 100 GeV): how is it crucial for IACTs?
- Afterglow VHE radiation mechanism: still not conclusive answer
 - Responsible radiation mechanisms
 - absence of synchrotron spectral cutoff (Can LST provide new info?)
 - particle acceleration mechanisms
 - magnetic fields

LST in the game: open issues (a not exhaustive list...)

- VHE emission in prompt phase?
- VHE emission from short GRBs
- Flares, plateaus not included in the external fwd shock scenario
- GRB environmental conditions (external medium profile: ISM? wind-like?)
- Shock microphysical parameters (unconstrained, time-dependent)
- Jet dynamics and structure (off-axis GRBs and GW connection)

LSTs can provide renovate and boost studies on GRB physics