A needle in a haystack A semi-supervised search for evolved stars with multiwavelength survey data and VO tools

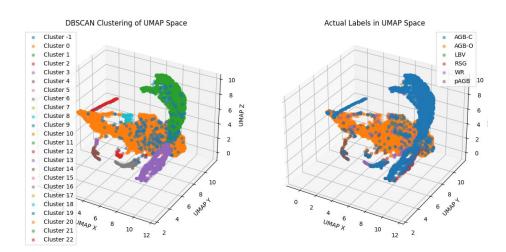
YEAR #1 Review

P.I : Cristobal Bordiu (INAF Osservatorio Astrofisico di Catania)

Project scope & status (Nov' 23)

Application of **semi-supervised learning techniques** to find an optimal latent representation that allows for **clustering and labelling unknown objects** based on **multiwavelength photometry** (using a subset of **known evolved stars** as reference) aka "**Cluster-then-label**" approach.

	Year 1				Year 2			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Data preparation								
Catalogue selection								
Photometry retrieval								
Dataset curation								
Architecture design								
Architecture design								
Model training								
Model fine tuning								
Result analysis								
Clustering analysis								
Candidate selection								
Candidate analysis								
Candidate curation								
Characterization						-		
Outcomes								
Main publication								
Conferences								
					we a	are here		


Tentative project roadmap as submitted in the Minigrant proposal

Highlights

Data collection complete. About **11.5k sources** with complete photometry (Gaia, 2MASS, WISE) belonging to **six classes:** O-rich AGB, C-rich AGB, post-AGB, RSG, LBV, WR.

Several representation learning methods tested:
 autoencoders (different architectures), TSNE, UMAP.
 UMAP yields the best results with a highly structured feature space that allows for the best clustering.

Density-based clustering is able to recover clusters
with a high degree of purity, required for tagging unknown objects in the cluster-then-label approach.

Left: HDBSCAN clustering of the UMAP representation of the 11.5 k sources. Right: Ground truth (real labels). Note that some source groups are split in multiple clusters, but those keep a high level of purity.

Next steps & prospects

- So far, no critical issues found
- Some preliminary results shown at EAS 2023 (Krakow)
- Next steps:
 - 1. Collect photometry of **unknown sources**. Reference dataset in Dorn-Wallenstein+2021 Also search SIMBAD [in progress]
 - 2. Project known and unknown sources, apply clustering and **propagate labels**
 - 3. Retrieve **VO information** of the best candidates to assess classification

Cluster-then-label scheme