

Verso la prima data release di PRISMA

D. Barghini et al. PRISMA Days 2023 Prato, 17-18 Novembre 2023

Data flow of PRISMA

PRISMA Days 2023 Prato, 17-18 Novembre 2023

17/11/2023

Astrometric calibration

- Captures are used to deduce an absolute astrometric and photometric calibration of each PRISMA cameras
- Automatic identification and catalogue's association of stars
- Astrometry of fish-eye cameras has to deal with a lot of distortion components in the FoV
- Final astrometric model accounts for 8 (+2) parameters

$$\begin{cases} b = a_0 - E + \operatorname{atan}\left(\frac{y - y_O}{x - x_O}\right) & \begin{cases} a = E + \operatorname{atan}\left(\frac{\sin b \sin u}{\cos u \sin \epsilon + \cos b \sin u \cos \epsilon}\right) \\ u = Vr + S(e^{Dr} - 1) & \begin{cases} z = \arccos(\cos u \cos \epsilon - \cos b \sin u \sin \epsilon) \\ z = \arccos(\cos u \cos \epsilon - \cos b \sin u \sin \epsilon) \end{cases} \\ r = [1 + K \sin(b + E - \phi)] \sqrt{(x - x_O)^2 + (y - y_O)^2} & \begin{cases} E = a_0 + \operatorname{atan}\left(\frac{x_O - x_Z}{y_O - y_Z}\right) \\ \epsilon = Vr_\epsilon + S(e^{Dr_\epsilon} - 1) \end{cases} \end{cases}$$

For details about PRISMA astrometric calibration: Barghini D., Gardiol D., Carbognani A. and Mancuso S., "Astrometric calibration for all-sky cameras revisited", *Astron. Astrophys.*, **2019**, 626, A105

Results of the astrometric calibration

- Astrometric solution for daily and monthly statistics for each camera
- We are able to reach a random projection error or ~ 0.2 arcsec for a monthly calibration (10k-100k stars)
- The residuals show a **small systematic** (< 1 px) which is numerically corrected

Photometric calibration

We perform **aperture photometry** on each identified star and compare experimental and catalogue (apparent) magnitudes to perform the photometric calibration

Analysis of events detected by PRISMA

- The astrometric and photometric calibration is then used to reduce each detection video
- Centring precision of the order of 0.1 px (few arcmins)
- Bright bolides often saturates
- We apply a tentative correction by the analysis of the shape of the unsaturated portion of the PSF

osf [/]

Triangulation

Two approaches:

- a) Plane intersection from couples of cameras
- **b)** Lines of Sight distance minimization

We implemented and combined both approaches in a unique solution

- We use (a) to detect outliers
- and then used (b) to give the final solution

Positioning precision of $\sim 100~\text{m}$

Dynamic model

Solution and fitting of the dynamic model over

observed data (height, speed, magnitude).

Two approaches:

- **Analytical solution** a)
- Numerical solution b)

Usually speed and magnitude data are considered separately. We implemented a novel approach with a simultaneous fitting of the deceleration and intensity data

- Purely dynamical model (only deceleration) 1.
- Photo-dynamic model (deceleration + intensity) 2.

The photodynamical approach is particularly useful when dealing with events which showed negligible deceleration

 $\frac{\mathrm{d}H}{\mathrm{d}t} = -V\sin\gamma$

Physical parameters of the meteoroid

From reasonable assumptions on the geometry of the body, we can retrieve the physical parameters of the body, such as the pre-atmospheric and final mass and typical dimensions

		GRIT_DYN	GRIT_PHD	NUM_DYN	NUM_PHD
V_{∞}	[km/s]	15.39 ± 0.08	15.41 ± 0.08	15.41 ± 0.05	15.40 ± 0.05
γ	[deg]	42.00 ± 0.20	42.00 ± 0.20	42.02 ± 0.04	42.09 ± 0.04
lpha	[/]	92 ± 11	100 ± 12	85 ± 10	89 ± 10
eta	[/]	1.8 ± 0.1	1.5 ± 0.1	2.50 ± 0.07	2.21 ± 0.07
Ω	[/]	5.5 ± 0.4	7.5 ± 0.2	7.5 ± 0.2	7.6 ± 0.1
σ (·10 ²)	$[s^2/km^2]$	4.6 ± 0.4	6.3 ± 0.2	6.3 ± 0.2	6.4 ± 0.1
μ	[/]	2/3	0.80 ± 0.01	2/3	0.71 ± 0.01
au	[%]	_	4.5 ± 1.7	-	3.1 ± 1.1
D_{∞}	$[kg/m^2]$	105 ± 12	97 ± 11	114 ± 12	109 ± 12
D_{fin}	$[kg/m^2]$	30 ± 4	38 ± 5	20 ± 2	25 ± 3
$\dot{M_{\infty}}$	[g]	190 ± 70	150 ± 60	240 ± 80	210 ± 70
M_{fin}	[g]	4 ± 2	1.1 ± 0.4	1.3 ± 0.5	1.3 ± 0.5
S_{∞}	$[\mathrm{cm}^2]$	18 ± 5	15 ± 4	21 ± 5	19 ± 5
S_{fin}	$[\mathrm{cm}^2]$	1.5 ± 0.4	3.0 ± 0.9	0.7 ± 0.2	0.5 ± 0.2
$2r_{\infty}$	[cm]	4.8 ± 0.6	4.4 ± 0.6	5.2 ± 0.6	5.0 ± 0.6
$2r_{fin}$	[cm]	1.4 ± 0.2	1.7 ± 0.2	0.9 ± 0.1	1.1 ± 0.1

Pre-atmospheric orbit

The deduced **pre-atmospheric speed** (from the dynamic model) and **3D orientation** of the trajectory in ECI coordinates (from the triangulation) are then used to estimate the pre-atmospheric orbit of the meteoroid

- 1. Correction for the **zenithal attraction effect**
- 2. Conversion to heliocentric ecliptic reference system
- 3. Computation of the **orbital elements**

Spee	Speed and radiant							
V_a	[km/s]	15.40 ± 0.05						
α_a	[deg]	64.98 ± 0.05	δ_a	[deg]	63.73 ± 0.04			
V_{g}	[km/s]	10.67 ± 0.07						
α_{g}	[deg]	47.45 ± 0.15	δ_g	[deg]	59.68 ± 0.06			
V_h	[km/s]	36.06 ± 0.06	0					
α_h	[deg]	106.65 ± 0.03	δ_h	[deg]	33.61 ± 0.06			
λ_h	[deg]	104.07 ± 0.03	ϕ_h	[deg]	10.99 ± 0.06			
Orbital elements								
h	[AU ² /yr]	7.49 ± 0.01	a	[AU]	1.89 ± 0.02			
e	[/]	0.500 ± 0.004	q	[AU]	0.9477			
i	[deg]	11.19 ± 0.06	Q	[AU]	2.84 ± 0.03			
Ω	[deg]	25.28251 ± 0.00008	T	[yr]	2.61 ± 0.03			
ω	[deg]	146.5 ± 0.1	T_J	[/]	3.77 ± 0.02			
ν	[deg]	33.5 ± 0.1	M_{ν}	[deg]	10.1 ± 0.2			

The PRISMA database will be divided in two main parts:

Calibration data:

- <u>Captures</u>: daily tarball with (~144) captures from each camera
- <u>Calibrations</u>: daily and monthly tarball with results of calibration from captures analysis

Events data:

- Events: tarball for each event with detections tarballs within it
- <u>Results</u>: results of the event processing (astrometry, triangulation, dynamic, orbit)

Each tarball will be given with a **FITS header** with all relevant metadata, and a preview image.

A selection of them (i.e., the most important ones) will be searchable within the database