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• Stars preserve information about the 
environment they formed through their chemical 
composition and their dynamics

• We are living in a golden age of Milky Way 
archaeology, with the advent of Gaia and 
positions and velocities of over a billion stars 
(Gaia Collaboration+ 2021), as well as 
spectroscopic measurements reaching deeper 

and deeper into the galaxy
• Simulations can provide predictions and 

interpretations for observations

Unraveling the Miky Way's history using 
galactic archaeology



Why the centre?

• According to our galaxy formation models, they grow "inside-
out", with the centre containing the oldest stars in the galaxy 
(Starkenburg+ 2017)

• Further, remnants of the oldest mergers are found here 
(Barbuy+ 2018)

• However, probing the centre of the galaxy comes with 
challenges such as: extremely high density of stars, small 
dynamical timescales, overlapping features (such as disc, bar, 

stellar halo)

Starkenburg+ 2017
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Probing the early assembly 

of the Milky Way

• Discovered through dynamical and chemical 
properties which suggest an accreted origin 
(Kruijssen+ 2020, Horta+ 2020)

• However not yet clear if Kraken and Heracles 
describe the same accretion event (Horta+ 2024)

• Possibly the largest merger in the Milky Way's 
history with a merger mass ratio of around 1:7 
(Kruijssen+ 2020)

• An accretion event that is buried in the inner 
regions of the galaxy (Kruijssen+ 2020)

Examples of early mergers: 
Kraken and Heracles

Horta+ 2020

GES

Kraken/
Heracles
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Can we separate different 
accretion events?

Can we separate in-situ from 
accreted?

GESKraken



Auriga Superstars: 
Using ultra-high resolution to study 

the metal-poor population

Cosmological zoom-in simulation
using AREPO (Springel+ 2010)

High resolution re-simulations of halos from 
the Auriga suite of 30 Milky Way mass halos 
(Grand+ 2016)

Simulation parameters:

• Dark matter mass resolution of 6 x 103 𝑀⊙
• Gas resolution of 5 x 104 𝑀⊙
• Stellar particle resolution of 800𝑀⊙

Grand+ 2016



Merger 
time (Gyrs)

Peak 
halo mass 

(𝑀⊙)

Peak 
stellar mass 

(𝑀⊙)

Merger 
mass ratio

Merger 1 1.91 3.0 x 109 1.5 x 108 1:14

Merger 2 2.26 9.6 x 109 1.9 x 108 1:17

Merger 3 5.34 1.6 x 1010 5.6 x 108 1:40

Merger 4 5.52 3.6 x 1010 1.5 x 109 1:17

Auriga 18 – A Milky Way "analogue"

Halo 18
• Virial mass of ~1.2 x 1012 𝑀⊙
• Boxy/peanut bulge with a bar
• Bulge is chemo-dynamically similar to the Milky Way 

(Fragkoudi+ 2020)
• Merger history with analogues to Milky Way 

(Fattahi+ 2019)
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Is this higher resolution useful?

Level 4 - 5 x 104 𝑀⊙



Level 4 - 5 x 104 𝑀⊙ Superstars - 800 𝑀⊙

Is this higher resolution useful?
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the centre

• Butt earliest merger peaks within 4 kpc region
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Understanding the accreted 

population in Au-18

GES

Kraken/ 
Heracles

• Accreted population dominated by in-situ stars at 
the centre

• But earliest merger peaks within 4 kpc region

Going to lower metallicities alleviates in-situ 
contamination – but doesn't get rid of it
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Understanding the accreted 

population in Au-18

Rotation in the accreted population! - Also not Gaussian

-2 < [Fe/H] < -1

Ardern-Arentsen+ 2023

See also talk by Hanyuan Zhang



The mergers in E-Lz space [Fe/H] < -0.5



Separating Merger 1 and Merger 4

• Distribution of these two mergers is quite different in E-Lz space, in addition to their differences in metallicity
• However, large overlaps will complicate assigning stars in the overlapping regions

-2 < [Fe/H] < -1
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Age-metallicity relations



Differences between the accreted and 

in-situ population

Accreted older 
than in-situ

Accreted same 
age as in-situ

Accreted younger 
than in-situ



Differences between the accreted and 

in-situ population

Accreted older 
than in-situ

Accreted same 
age as in-situ

Accreted younger 
than in-situ

Merger 1

[Fe/H] < -0.5



Differences between the accreted and 

in-situ population

Accreted older 
than in-situ

Accreted same 
age as in-situ

Accreted younger 
than in-situ

Merger 1 Merger 2

[Fe/H] < -0.5



Differences between the accreted and 

in-situ population

Accreted older 
than in-situ

Accreted same 
age as in-situ

Accreted younger 
than in-situ

Merger 1 Merger 2

Merger 3

[Fe/H] < -0.5



Differences between the accreted and 

in-situ population

Accreted older 
than in-situ

Accreted same 
age as in-situ

Accreted younger 
than in-situ

Merger 1 Merger 2

Merger 3 Merger 4

[Fe/H] < -0.5



Conclusions

Can we further separate in-situ 

from accreted?

• In-situ population dominant even in low 

metallicity regime

• It may be possible to separate in-situ from 

accreted with accurate measurements and 

the inclusion of more chemical 

abundances

• However, the old, metal-poor in-situ and 

early accreted populations are very similar

Can we separate the different 

accretion events?

• The distribution of stars from different 

mergers is different, however with 

significant overlaps

• The different mergers have different 

prevalences in various metallicity ranges

• At least separating the earlier (Kraken-

like) from the later mergers (GES-

like) seems feasible 

• Further separating these into individual 

mergers appears challenging
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Can we further separate in-situ 

from accreted?

• In-situ population dominant even in low 

metallicity regime

• It may be possible to separate in-situ from 

accreted with accurate measurements in a 

multi-dimensional space with more 

chemical abundances

• However, the old, metal-poor in-situ and 

early accreted populations are very 

similar

Can we separate the different 

accretion events?

• The distribution of stars from different 

mergers is different, however with 

significant overlaps

• The different mergers have different 

prevalences in various metallicity ranges

• At least separating the earlier (Kraken-

like) from the later mergers (GES-

like) seems feasible 

• Further separating these into individual 

mergers appears challenging

Thank 
You!!
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Stars with co-rotation orbits



Starkenburg plot for Au18



Normalised MDFs



Kinematics of all, in-situ, and accreted stars in different metallicity bins compared to data from 

Arentsen+ 2020



Apocentre distribution



[Fe/H] vs [Eu/Fe]



[Fe/H] vs [α/Fe]



High energy in-situ population before GES-like merger and at almost present day

Before GES-like merger Almost present day



[Fe/H] distribution in accreted 

population



Exploring the distribution in ages and [Fe/H]

Distribution in only the in-situ 

population



[Eu/Mg] vs Energy
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