Digging for the Relics of Ancient Mergers at the Heart of the Milky Way

Thomas Tomlinson

with Francesca Fragkoudi, Andreia Carrillo, and Azadeh Fattahi

thomas.j.tomlinson@durham.ac.uk

Unraveling the Miky Way's history using galactic archaeology

- Stars preserve information about the environment they formed through their chemical composition and their dynamics
- We are living in a golden age of Milky Way archaeology, with the advent of Gaia and positions and velocities of over a billion stars (Gaia Collaboration+ 2021), as well as spectroscopic measurements reaching deeper and deeper into the galaxy
- Simulations can provide predictions and interpretations for observations

Why the centre?

- According to our galaxy formation models, they grow "insideout", with the centre containing the oldest stars in the galaxy (Starkenburg+ 2017)
- Further, remnants of the oldest mergers are found here (Barbuy+ 2018)
- However, probing the centre of the galaxy comes with challenges such as: extremely high density of stars, small dynamical timescales, overlapping features (such as disc, bar, stellar halo)

Starkenburg+ 2017

Probing the early assembly of the Milky Way

Examples of early mergers: Kraken and Heracles

- Discovered through dynamical and chemical properties which suggest an accreted origin (Kruijssen+ 2020, Horta+ 2020)
- However not yet clear if Kraken and Heracles describe the same accretion event (Horta+ 2024)
- Possibly the largest merger in the Milky Way's history with a merger mass ratio of around 1:7 (Kruijssen+ 2020)
- An accretion event that is buried in the inner regions of the galaxy (Kruijssen+ 2020)

Horta+ 2020

Auriga Superstars: Using ultra-high resolution to study the metal-poor population

Cosmological zoom-in simulation using AREPO (Springel+ 2010)

High resolution re-simulations of halos from the Auriga suite of 30 Milky Way mass halos (Grand+ 2016)

Simulation parameters:

- Dark matter mass resolution of 6 x $10^3 M_{\odot}$
- Gas resolution of $5 \times 10^4 M_{\odot}$
- Stellar particle resolution of $800 M_{\odot}$

Grand+ 2016

Auriga 18 – A Milky Way "analogue"

Halo 18

- Virial mass of $\sim 1.2 \ge 10^{12} M_{\odot}$
- Boxy/peanut bulge with a bar
- Bulge is chemo-dynamically similar to the Milky Way (Fragkoudi + 2020)
- Merger history with analogues to Milky Way (Fattahi+2019)

	Merger time (Gyrs)	Peak halo mass (M_{\odot})	Peak stellar mass (M_{\odot})	Merger mass ratio
Merger 1	1.91	3.0 x 10 ⁹	1.5 x 10 ⁸	1:14
Merger 2	2.26	9.6 x 10 ⁹	1.9 x 10 ⁸	1:17
Merger 3	5.34	$1.6 \ge 10^{10}$	5.6 x 10 ⁸	1:40
Merger 4	5.52	3.6 x 1010	1.5 x 10 ⁹	1:17

Auriga 18 – A Milky Way "analogue"

Halo 18

- Virial mass of $\sim 1.2 \ge 10^{12} M_{\odot}$
- Boxy/peanut bulge with a bar
- Bulge is chemo-dynamically similar to the Milky Way (Fragkoudi + 2020)
- Merger history with analogues to Milky Way (Fattahi+2019)

	Merger time [rs]	Kraken/ Heracles	Peak stellar mass (M_{\odot})	Merger mass ratio
Merger 1		3.0 X 10 ⁹	1.5 x 10 ⁸	1:14
Merger 2	2.26	9.6 x 10 ⁹	1.9 x 10 ⁸	1:17
Merger 3	5.34	$1.6 \ge 10^{10}$	5.6 x 10 ⁸	1:40
Merger 4	5.52	$3.6 \ge 10^{10}$	1.5 x 10 ⁹	1:17

Auriga 18 – A Milky Way "analogue"

Halo 18

- Virial mass of $\sim 1.2 \ge 10^{12} M_{\odot}$
- Boxy/peanut bulge with a bar
- Bulge is chemo-dynamically similar to the Milky Way (Fragkoudi + 2020)
- Merger history with analogues to Milky Way (Fattahi+2019)

	Merger time [rs]	Kraken/ Heracles	Peak stellar mass (M_{\odot})	Merger mass ratio
Merger 1		3.0 X 10 ⁹	1.5 x 10 ⁸	1:14
Merger 2	2.26	9.6 x 10 ⁹	1.9 x 10 ⁸	1:17
Merger 3		1.6×10^{10}	5.6 x 10 ⁸	1:40
Merger 4		GES 10	1.5 x 10 ⁹	1:17

Is this higher resolution useful?

Level 4 - 5 x $10^4 M_{\odot}$

Is this higher resolution useful?

Level 4 - 5 x $10^4 M_{\odot}$

Superstars - $800 M_{\odot}$

- Accreted population dominated by in-situ stars at the centre
- Butt earliest merger peaks within 4 kpc region

- Accreted population dominated by in-situ stars at the centre
- But earliest merger peaks within 4 kpc region

- Accreted population dominated by in-situ stars at the centre
- But earliest merger peaks within 4 kpc region

- Accreted population dominated by in-situ stars at the centre
- But earliest merger peaks within 4 kpc region

- Accreted population dominated by in-situ stars at the centre
- But earliest merger peaks within 4 kpc region

- Accreted population dominated by in-situ stars at the centre
- But earliest merger peaks within 4 kpc region

- Accreted population dominated by in-situ stars at the centre
- But earliest merger peaks within 4 kpc region

Going to lower metallicities alleviates in-situ contamination – but doesn't get rid of it

Understanding the accreted population in Au-18 -2 < [Fe/H] < -1

Understanding the accreted population in Au-18 -2 < [Fe/H] < -1

 $_{2.5} \times 10^{-3}$ in-situ 2.0accreted 1.5PDF1.00.50.0 200400 600 -600-400-2000 $v_{\phi} (km s^{-1})$

The mergers in $E-L_z$ space

Separating Merger 1 and Merger 4

- Distribution of these two mergers is quite different in E-L_z space, in addition to their differences in metallicity
- However, large overlaps will complicate assigning stars in the overlapping regions

- Distribution of these two mergers is quite different in E-L_z space, in addition to their differences in metallicity
- · However, large overlaps will complicate assigning stars in the overlapping regions

in-situ stars

lookback time (Gyrs)

0.0

M4

-5

lookback time (Gyrs)

Accreted older than in-situ

Accreted same age as in-situ

Accreted younger than in-situ

Accreted older than in-situ

Merger 1

Accreted same age as in-situ

Accreted younger than in-situ

Conclusions

Can we separate the different

accretion events?

- The distribution of stars from different mergers is different, however with significant overlaps
- The different mergers have different prevalences in various metallicity ranges
- At least separating the earlier (Krakenlike) from the later mergers (GESlike) seems feasible
- Further separating these into individual mergers appears challenging

Can we further separate in-situ

from accreted?

- In-situ population dominant even in low metallicity regime
- It may be possible to separate in-situ from accreted with accurate measurements and the inclusion of more chemical abundances
- However, the old, metal-poor in-situ and early accreted populations are very similar

Conclusions

Can we separate the different

accretion events?

- The distribution of stars from different mergers is different, however with significant overlaps
- The different mergers have different prevalences in various metallicity ranges
- At least separating the earlier (Krakenlike) from the later mergers (GESlike) seems feasible
- Further separating these into individual mergers appears challenging

Can we further separate in-situ

from accreted?

- In-situ population dominant even in low metallicity regime It may be possible to separate in-situ from accreted with accurate measurements in a multi-dimensional space with more chemical abundances
- However, the old, metal-poor in-situ and early accreted populations are very similar

Thank You!!

٠

Additional Slides

Starkenburg plot for Au18

Normalised MDFs

Kinematics of all, in-situ, and accreted stars in different metallicity bins compared to data from Arentsen+ 2020

Apocentre distribution

High energy in-situ population before GES-like merger and at almost present day

Before GES-like merger

Almost present day

[Fe/H] distribution in accreted population

Exploring the distribution in ages and [Fe/H]

