NEW VIEW OF GALACTIC DISCS: PRECISE AGES WITH INDIVIDUAL OSCILLATION MODES

Josefina Montalbán

European Research Council Established by the European Commissio

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

precise, accurate stellar properties (e.g. radius, mass, age to ~10%)

To reconstruct the assembly and chemo-dynamical history of the Galaxy

Kepler

Solar-like oscillators

SOLAR-LIKE OSCILLATIONS

Chaplin & Miglio, 13

SOLAR-LIKE OSCILLATIONS

Oscillations intrinsically dumped but forced by Convection.

Convection => Red border of Classical Instability stript.

Multiperiodic oscillators, radial and non-radial, mixed g/p character

Chaplin & Miglio 2013

Solar-like oscillators

- Periods: minutes to hours
- Intrinsically damped, but forced by turbulent convection
- Amplitudes: ppm-tens of ppm
- Acoustic modes: radial and nonradial (~ asymptotic regime)
- In subgiants/giants: p-g mixed modes (probing inner regions)

$$u_{\rm max} \propto
u_{\rm cutoff} \propto g/$$

Frequency [µHz]

KIC 7522297

110

2.105

SOLAR-LIKE OSCILLATION SPECTRA

Frequencies of modes or regular patters in freq. or period: $\langle \Delta \nu \rangle^2 \propto ar{
ho} = \Delta P$, δv_{02} ...

Info. density profile or at least mean density

Radius (or equiv.)

Solar-like oscillations in Red Giants: scaling relations

And many more, e.g.: Pinsonneault+14,18(APOKASC-1/2) Rodrigues+17; Valentini+19; Anders+15, Miglio+09,13, Stello+10, Mosser+10,11...

$$\log g = \log g_{\odot} + \log \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) + \frac{1}{2} \log \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)$$

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}.$$
 Distance

$$\frac{M}{\mathrm{M}_{\odot}} \simeq \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\mathrm{eff}}}{T_{\mathrm{eff},\odot}}\right)^{3/2},$$

0.2

Even if M and R are known with high precision and accuracy AGE IS ALWAYS MODEL DEPENDENT And one needs to know the relation between current MASS and initial MASS

HRD of red giants in Kepler field

- 5400 Kepler Red Giants
- $\Delta V + V_{max}$ and ΔP

APOGEE - DR14

3300 RGB

Age dissection of the MW discs (Miglio+21)

M, R, AGE and distances from code PARAM (da Silva+06, Rodrigues+17) based on a grid of models with:

 $<\Delta v>$ computed from theoretical radial modes NOT from scaling

$$\nu_{\rm max} = \frac{M/M_\odot}{(R/R_\odot)^2 \sqrt{T_{\rm eff}/T_{\rm eff_\odot}}} \nu_{\rm max\odot}$$

 $\Delta P \rightarrow$ select only RGBs (R < 11R_{sun})

3300 RGB: Median (random) uncertainties 6% and **23%** for M and AGE

AGE-[a/Fe] in the solar neib.

The [α/Fe]-rich population is composed primarily of very old objects, older than most of the [α/Fe]-poor ones, and a very tight age-[α/Fe] relation for α-rich pop. Mean AGE (α-rich) ~ 11Gyr with 95% of the population born within 1.52+0.54/-0.46 Gyr

Age dissection of the MW discs (Miglio+21)

AGE-velocity dispersion (AVR)

The precision (~20%) in age allow to clearly see the abrupt change at 10Gyr and the difference in kinematics between the low- and high- $\left[\alpha/Fe\right]$ populations. => important observational constraint toward understanding the origin of this difference.

- solar vicinity.

• Star formation rate halt after the formation of the thick disc (z~2)

• Evidence of radial migration: old metal rich likely born in the inner regions (2-4 kpc) are now in the

See also Aguirre+18 but with a much smaller number of Kepler stars

oscillation spectrum: global parameters or individual frequencies

individual mode frequencies

Methodology

Obs. constraints

• Extract and identify individual frequencies of radial $\{v_{0n}\}$ and quadrupole (v_2) modes for the seismic sample + global seismic parameters: $\Delta v, \Delta P, v_{max}$

+crossmatch with different pipelines: FAMED (Corsaro) x PBJam (Nissen) x ABBA (Kallinger)

• APOGEE-DR17 => Teff [Fe/H] [a/Fe]

AIMS : Asteroseismic Inference on Massive Scale (Reese2016, Rendel+19): Bayesian inference + MCMC sampler.
+ Grids of stellar evolution models (CLES) & theoretical frequencies (LOSC) interpol. parameters: M, Z₀, Age

& surf. effect corrections

Grid of stellar models

- Stellar models with code CLES (Scuflaire +08) from PMS to RGB (25 Rsun)
- M: 0.6 2.5 Msun (step 0.02)
- [Fe/H]: -4.5 to 0.6
- [α/Fe]: -0.1; 0.0; 0.1; 0.2; 0.3; 0.4; 0.5 and 0.6
- Asplund+09 solar mixture
- $\Delta Y / \Delta Z = 1.0$; 1.5. and 2.0
- OPACITY Tables for each metal mixture (OPAL + Wichita University tables for low temperature)
- Microscopic diffusion
- Small core-overshooting (0.1)
- Adiabatic radial mode frequencies for each model from ZAMS until end of the track

Stellar AGES

See also Rendel+19, Chaplin+20, Montalban+21, Poster by J. Sinkbæk Thomsen

 SAMPLE of Kepler RGBs survived after all the steps: 2325

Stellar AGES

AGE inferred from best fit of : individual frequencies Vmax, Z/H_surface, Teff

Effect of enrichment-law $\Delta Y / \Delta Z$ on age determination

Young population (< 9 Gyr) vs [Fe/H]

Old population (>= 9 Gyr) vs [Fe/H]

AGE-velocity dispersion

Summary/perspectives

Thanks to the combination of very high quality data Kepler, APOGEE-DR17 and Gaia-DR3

- We have characterised a sample of 2300 RGB in Kepler field using the individual radial modes as seismic constraints, and got AGE relative precisions ~ 10% and confirm the results presented in Miglio+21
- We also find an old metal-rich population (thin-disk orbits?)
- The properties of our RGB pop present similar features than MSTO and SubG
- A consistent and careful application scaling relations and a based grid-of- models procedure (e.g. PARAM) provide precise masses and ages (Mass with 6%, AGE with 23% uncertainty) in good agreement with individual radial modes
- Mass LOSS => improve models => better AGES (poster by Karsten Brogaard)

Ensemble Asteroseismology allows us also to constraint unknown aspects of stellar physics, in particular

Summary/perspectives

- The sample will be very soon increased by, at least, 50%
- We expect this new data will be included as training sets in ML procedures.

e.g. Leung+23: New Astro-NN ages based on Miglio+21 (~25% uncertainty on age) for training:

See also Patil+23; Anders+23; Das+20; Sanders&Das18...

Next...

PLATO calibration catalogue will contain 24k red giants that will be also observed by 4MOST (in 4MIDABLE-LR, PIs: Cristina Chiappini, Ivan Minchev)

Some of them belonging to stellar clusters (see poster by Lorenzo Briganti)

PLATO-Additional Science Galactic Archeology (=> Saskia's talk)

THANK YOU FOR YOUR ATTENTION !

Thanks also to the other participants in this project:

Andrea Miglio, Enrico Corsaro, Cristina Chiappini, Emma Willett, Samir Nepal, Arlette Noels, Richard Scuflaire, Guy R. Davies, Martin Bo Nielsen, Ben M. Rendle, Jason W. Ferguson,...

EAMED https://github.com/EnricoCorsaro/FAMED

PBJam https://github.com/grd349/PBjam

https://github.com/tkallinger/KeplerRGpeakbagging ABBA

European Research Council Established by the European Commissio

https://gitlab.com/sasp/aims

