

Chronology of our Galaxy from Gaia CMD-fitting:

dynamically evolved star formation histories of the Milky Way

Carme Gallart (IAC, Spain)

ChronoGal core team:

Santi Cassisi, Emma Fernández-Alvar, Tomás Ruiz-Lara, Francisco Surot, Guillem Aznar-Menargues, Yllari González-Koda, David Mirabal, Anna B. Queiroz, Alicia Rivero, Judith Santos

IAC/ULL, Spain - INAF, Italy - U. Granada, Spain

Derivation of the Milky Way SFH through Gaia CMD fitting

Comparison with age-metallicity distributions from individual star ages

-The difference is due to the **increased precision** in age and [M/H]

-An important difference, not visually apparent, is that we provide the actual number of stars in the different events of star formation//mass involved

-We don't derive individual stellar ages.

Thick disc SFH

Thin disc SFH

Formed AFTER 10 Gyrs ago

Queiroz+ 2024, in prep

Anna Queiroz talk On Wednesday

Low metallicity stars in the thin disk

Chronology of our Galaxy from Gaia Colour-Magnitude Diagram-fitting (ChronoGal). I. The formation and evolution of the thin disk from the Gaia Catalogue of Nearby Stars

Carme Gallart^{1, 2}, Francisco Surot¹, Santi Cassisi^{†,3,4}, Emma Fernández-Alvar^{†,1,2}, David Mirabal^{†,2}, Alicia Rivero ^{†,2}, Tomás Ruiz-Lara^{†,5,6}, Judith Santos-Torres^{†,2,7}, Guillem Aznar-Menargues², Giuseppina Battaglia^{1,2}, Anna B. Queiroz^{1,2}, Matteo Monelli^{1,2}, EugeneVasiliev⁸, Cristina Chiappini⁹, Amina Helmi¹⁰, Vanessa Hill¹¹, Davide Massari¹², and Guillaume F. Thomas^{1,2}

Two goals

-Present our CMD fitting methodology applied to Gaia data: CMDft.Gaia -Quantitatively study the deSFH and <u>current age-metallicity distribution</u> of the close solar neighbourhood (d<100pc)

deSFH

Mass, per unit time and metallicity, that has been transformed into stars somewhere in the galaxy to account for the stars that are today in the studied volume

Derivation of the SFH with CMD fitting

AGE AND METALLICITY INFORMATION IN THE COLOR-MAGNITUDE DIAGRAM Synthetic CMD computed with BaSTI (Pietrinferni et al. 2004) stellar evolution models

★ Isochrone interpolation Continuous distribution of stars of any age and metallicity in the required intervals

down to the oMSTO.

Also in v_{rad}!

Example of error and completeness simulation for a volume with |Z|=1600-2300 pc, $R_{sun}=1$ Kpc

2.5e+05

-2.0e+05

1.5e+05

-1.0e+05

-5.0e+04

0.0e+00

2

SFR [M_©yr⁻¹]

★ CMD.ftGaia produces deSFH that are:

→ robust (against sensible changes in input parameters, e.g. binaries, SSPs 'size', stellar models, size of mother, weights, reddening map...)
→ precise (better than 5-10%, depending on age)
→ accurate (ages systematically overestimated by a maximum of 6%)

output of CMD.ftGaia

dynamically evolved Star Formation History "deSFH" Within 100 pc from the Sun

deSFH: Mass, per unit time and metallicity, that has transformed into stars, somewhere in the Galaxy, to account for the stars currently present in the analysed volume.

output of CMD.ftGaia

Stellar Age and Metallicity Distribution "AMD" of the stars currently within 100 pc of the Sun

Effect of mother CMD size

\star Precision and accuracy:

Effect of SSP size. Tests with observed and synthetic star clusters

For the adopted S bins, the ages of the 2-12 Gyr old clusters recovered with precisión better than 5%

\star Robustness against change of stellar evolution models

BASTI-IAC, solid lines vs. PARSEC, dotted lines

BaSTI-IAC models slightly hotter (bluer) and fainter

Expect slightly more metal rich, younger solutions with BaSTI

\star Robustness against change of stellar evolution models

★ Accuracy and precisión of the derived MDF

The spatially resolved star formation history of the Milky Way disk

We are analyzing a cylinder of **R = 1 Kpc** and **0 < |Z| < 3.5 Kpc to determine disk SFH(Z)** (stars with halo-like kinematics removed)

-What is the stellar **age/metallicity distributions** across the disk(s)?

-Do accretion events induce star formation in the disk?

The variation of **SFR**(t,[M/H]) across the Milky Way disk

We will see:

-How the agemetallicity relation evolves across the Milky Way disk

-There are distinct star formation episodes

Let's focus first on the SFR(t)

AGAIN!

Now, let's focus on the age-metallicity plane

AGAIN! Now, let's focus on the age-metallicity plane

Gallart+ 2019: the early accretion of Gaia-Enceladus induces a burst of star formation in the Milky Way thick disk

★ CMD.ftGaia produces deSFH that are:

 \rightarrow **robust** (against sensible changes in input parameters, e.g. binaries, SSPs 'size', stellar models, size of mother, weights, reddening map...)

- \rightarrow **precise** (better than 5-10%, depending on age)
- \rightarrow **accurate** (ages systematically overestimated by a maximum of 6%)
- \rightarrow Unbiased <u>age and metallicity distributions</u>, quantitative SFHs can be obtained for millions of stars in all evolutionary phases, over a large MW volume

 \rightarrow Possibility to explore the age-metallicity distributions as a function of position in MW and for diferente MW components.

