Massively determining stellar ages with SPInS

The Milky Way assembly tale Bologna May 2024

Laia Casamiquela - GEPI Observatoire de Paris Misha Haywood, Daniel Reese, Yveline Lebreton, Rupam Jash, Friedrich Anders, David Katz, Paola Di Matteo

Galaxies Étoiles Physique et Instrumentation

Context 2M

Reliable age estimates set the **time scales** of Galactic dynamical and chemical evolution

Most reliable methods?

- Asteroseismology - Isochrone fitting

 G, G_{BP}, G_{RP} + parallax, 3D extinction maps + [Fe/H], [α /M]

I. Testing the strategy in clusters II. Large scale ages for field stars

SPInS: Stellar Parameters Inferred Systematically

[Lebreton & Reese 2020]

Stellar parameters inferred from **stellar evolution model grid** using **classical constrains**

PDF sampling:

- Mass
- Age
- Metallicity

New implementation: convergence from the

integrated autocorrelation time (τ) [Hogg & Foreman-Mackey 2018]

Reese Daniel / SPInS · GitLab

SPInS: Stellar Parameters Inferred Systematically

The **grid**: solar-scaled BASTI, overshooting, mass loss, diffusion

1,176 evolutionary tracks

 $M_0 = [0.1M_{\odot}, 15M_{\odot}]$ [M/H] = [0.45, -3.197]

The observational constraints

 $M_G, (G_{BP} - G_{RP})_0, [M/H]$

I. Testing the strategy in clusters

Among the best anchors to validate age estimations Control sample to evaluate the capacity of SPInS to obtain ages of INDIVIDUAL stars

13 **Open clusters** with Age = [70Myr, 7Gyr], [Fe/H] = [-0.11, 0.11] 1 **globular cluster** NGC 6397 (d = 2.5 kpc, Age=12.8 Gyr [Correnti et al. (2018);

~4,000 MSTO & SG [Fe/H]= -1.98, [alpha/Fe] = 0.36 [Carretta et al. (2019)] ← Metallicity scaling using Salaris+1993

I. Testing the strategy in clusters

I. Testing the strategy in clusters

Filtered ages better than 10% & 500 Myr

Gaia absolute CMD

⇒ restriction to good uncertainties in : parallax (~ 1%) Absolute magnitudes (~0.03) RUWE (<1.2)

⇒ good estimation of <u>reddening</u>:
3D extinction maps [Vergely, Lallement & Cox 2022]
(3kpc x 3kpc x 800 pc, resolution 10 pc)
Avoiding low latitude regions

Selection of main sequence turnoff and subgiant stars as Queiroz+2023 (StarHorse) Sample of ~250k stars (LRS), ~35k stars (MRS)

Comparison with recent catalogues in the literature

Age-metallicity relation

MRS 35k stars

LRS 250k stars

Age-metallicity relation

MRS 35k stars

LRS 250k stars

Alpha-age relation [MRS]

Conclusions

- Ages with **SPInS** are reliable using only absolute colour-magnitude diagrams + metallicities
- **Clusters** are great to test goodness of ages, and understand possible biases
 - Unresolved binaries/blue stragglers
 - Young low main sequence stars
- For a local sample (~ 1 kpc) of **245k & 35k stars in LAMOST DR8**
 - Expected age-metallicity relation with tight and clean thick disk sequence
 - Alpha vs age relation

[Casamiquela et al. in prep.]