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Property MW M31
Total Mass ~.7-1.5x10%* Mg ~1-3x10% Mg
SteIIar Mass ~5x101°M .2011 Mg
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. even bulk properties of M31 suggest a more vigorous history of
mergers and accretions compared to the Milky Way
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PANndAS Survey, Mackey, Ferguson et al. 2019

The Quter Stellar Halo of M31
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Globular Clusters in the Outer Stellar Halo of M31
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Quantifying the Association of GCs and Substructure
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1 Focus on the 92 GCs at R > 25 kpc, 77 of which
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Quantifying the Association of GCs and Substructure

35-62% show evidence
of being accreted

* 35 GCs clearly unassociated with substructur

* 32 GCs clearly associated with substructure
e
25 GCs with “ambiguous associations”
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Quantifying the Association of GCs and Substructure
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Photometric Properties of GC Classes

Mackey, Ferguson et al. 2019

[ I T
| Substructure

| Ambiguous

| Non-substructure

~10
Integrated luminosity (M,)

-8

0.2

1 0.15

0.1

1 0.05

0.2

1 0.15

0.1

4 0.05

0.2

1 0.15

0.1

] 0.05

Bimodal LFs + Varying bright peak

0 10

T I T T T T
Substructure

—

Ambiguous

Non—substructure

20
Half-light radius (r,) (pc)

30

Extended GCs

SO N A OO OO N B~ O OO N O O
I

T | T T T T I T ]
Substructure 3

1 l/-\l | 1
1.1 1.2

0.8

0.9 1

Intrinsic Colour (V-I),

Excess red substructure GCs?



Kinematical Properties of Overall GC Population
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Kinematical Properties of GC Classes

Two major accretion epochs in M31 from two

distinct populations of globular clusters

Recent accretion

Dougal Mackey'*, Geraint F. Lewis?, Brendon J. Brewer?, Annette M. N. Ferguson?, Jovan Veljanoski®, Avon P. Huxor®, eve n t ) 4 3 G C S
Michelle L. M. Collins’, Patrick C6té®, Rodrigo A. Ibata’, Mike J. Irwin'®, Nicolas Martin®!, Alan W, McConnachie®,

Andromeda-centric velocity (km s7) M h a | O> 1 . 9 X 1 O 1 1 M @

Jorge Pefiarrubia®, Nial Tanvir'? & Zhen Wan?
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Further Evidence for a Significant

Recent Accretion Event

Deep HST CMDs for 14 inner halo I L L
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Further Evidence for a Significant
Gclump 5 Recent Accretion Event
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Bernard et al. 2015a; See also Dorman et al. 2013

Further Evidence for a Significant Recent Event
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Disc-like fields experienced nearly continuous star formation (note burst
at 2Gyr seen throughout main disc) and slow chemical evolution

- Consistent with a splashed/kicked up thin disc origin for this
component




Bernard et al. 2015a; see also Brown et al. 2006

Nature of the Giant Stream Progenitor?
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SF in giant stream progenitor got underway early on, peaked 8-9 Gyr ago,
and quenched 5-6 Gyr ago

~50% of the stellar mass in place by 9 Gyr ago and reached solar
metallicity by 5 Gyr ago =2 a massive system.



HST observations of 48 outer halo GCs:
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ABSTRACT

A new method of abundance determination, based upon reddening-independent characteristics
of low-resolution spectral scans, has been applied to 177 red giants in 19 globular clusters. Most
of these clusters have galactocentric distances exceeding 8 kpc. We find that there is no radial
abundance gradient in the cluster system of the outer halo. The distribution over abundance
for these outer clusters appears to be independent of galactocentric distance and is nearly identical
to that for halo subdwarfs in the solar neighborhood. This distribution is such that the density
declines exponentially with increasing metal abundance. The clusters of the outer halo show a
broad spread in the color distribution on the horizontal branch, and this property is uncorrelated
with metal abundance. In contrast, more tight ﬁ ound clusters, in the same ranﬁe of abundance,
sﬁgw very fittle alsgersion in_this_property. ese facts are all consistent with the hypothesis
that the loosely bound clusters of the outer halo have a broader range of age than the more
tightly bound clusters aind originated in transient protogalactic fragments that continued to fall
into Eiynamlcal equilibrium w1ti5 the Galaxy Tor some time after the collapse of its central regions
had been completed.

Subject headings: clusters: globular — galaxies: Milky Way — galaxies: structure —
stars: abundances — stars: late-type .



Ssummary

M31 has a very rich and extended halo GC system that exhibits a remarkable
property — the spatial correlation of GCs and tidal streams. Late-time accretion
can account for 35-62% of the outer halo GC population!

While accreted GCs do not have distinct photometric properties, they exhibit a

striking kinematical pattern that suggests they arrived via a single massive
recent accretion event = triggered the 2Gyr disc-wide burst of star formation
and led to subsequent splashing of disc material throughout the inner halo?

Deep HST CMDs show that accreted GCs are the origin of (all/most?) very red
(young?) HB GCs in the M31 halo, further supporting a merger with a galaxy
that was forming stars until relatively recently.



