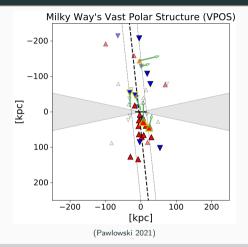
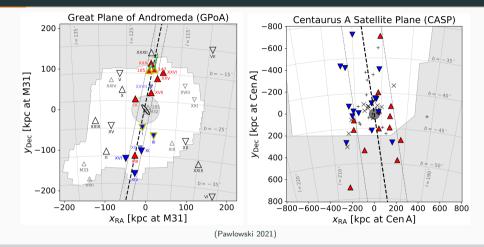

A portrait of the Vast Polar Structure as a young phenomenon

Salvatore Taibi

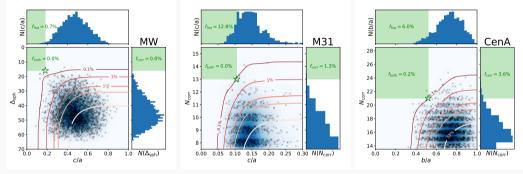

in collaboration with: M. S. Pawlowski, S. Khoperskov, M. Steinmetz, N. I. Libeskind (AIP)

The MW assembly tale, Bologna, May 28, 2024

The Milky Way system of satellites


The plane of satellites of the Milky Way

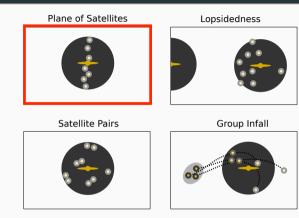
Most MW satellites distribute along the Vast Polar Structure


A polar extended structure of ${\sim}20$ kpc height showing mostly a coherent motion

Plane of satellites: M31 and Cen A

Evidences of planes with coherent kinematics around M31 and Cen A Flattened distributions also observed around M 81, M 101, NGC 4490

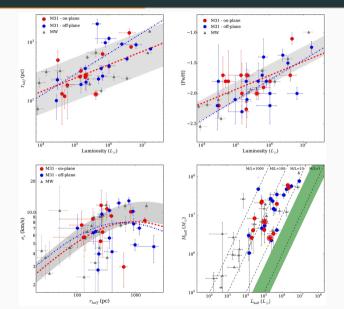
Plane of satellites: at odds with $\Lambda\text{-}\text{CDM}$



(Pawlowski 2021)

Simulations struggle to reproduce observed phase-space correlations < 1% of halos in both dark-matter only and hydro-dynamical simulations

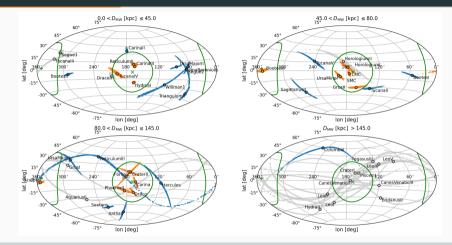
4


Phase-space correlation in systems of satellite galaxies

(Pawlowski 2021)

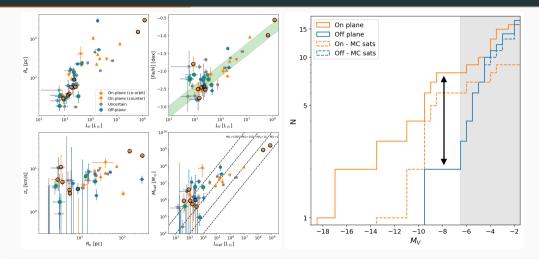
Numerous different types of phase-space correlations have been investigated The most popular is the <u>Plane of Satellites issue</u> which challenges Λ-CDM

M31 case: no differences between on- and off-plane systems

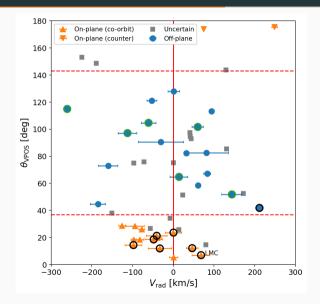


Collins et al. (2015)

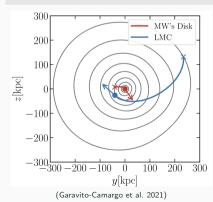
- No significant differences recovered between the onand off-plane systems
- Ruled out scenarios in which on-plane systems have a different formation


The VPOS case

VPOS: Taibi et al. (2024, A&A, 681, A73)

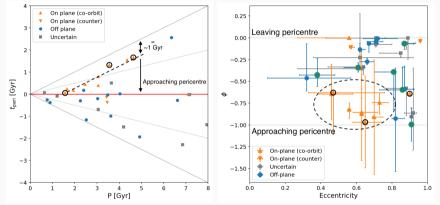

Are there any differences between on- and off-plane MW satellites? Orbital poles for 50 systems using Gaia-eDR3 data from Battaglia et al. (2022)

Comparison of physical properties



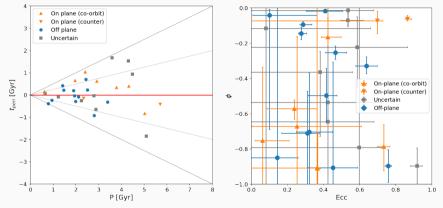
Differences on scaling relations driven by the bright on-plane systems

Comparison of kinematic properties



Co-orbiting on-plane systems mostly approaching the MW Minor changes due to LMC's caused <u>reflex motion</u>

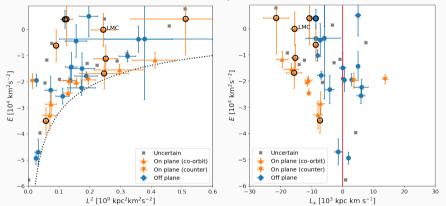
Comparison of orbital properties


Low-mass potential ($M_{\rm vir} = 8.8 \times 10^{11} M_{\odot}$; adapted from Vasiliev et al. 2021)

On-plane co-orbiting systems coordinately approaching pericentre Valid also for high-mass MW potential $(1.6 \times 10^{12} M_{\odot})$

The role of the LMC

Low-mass potential perturbed by a massive LMC ($M_{\rm vir} = 1.5 \times 10^{11} M_{\odot}$; Vasiliev+21)



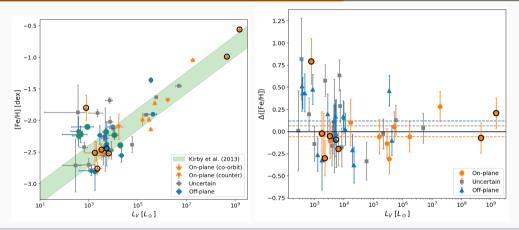
On-plane systems are still approaching pericentre

Evidence of a recent group accretion event?

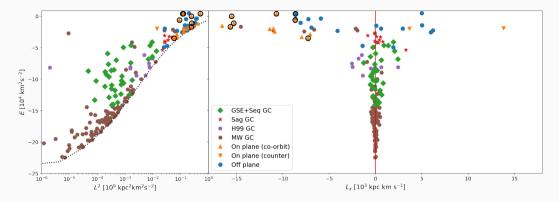

Inspecting E - L

Low-mass potential

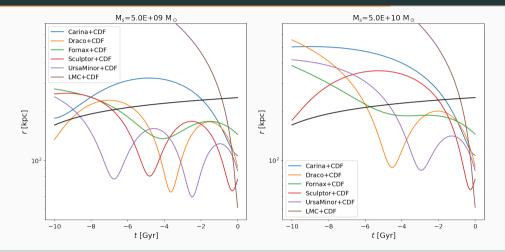
A part for the LMC-system, on-plane systems have lowest E for given L What are the implications for the VPOS longevity?


VPOS: possible formation mechanisms

Pawlowski (2018)


Several scenarios related to the late accretion of satellite systems \rightarrow the VPOS as a young structure

Do on-plane systems have a tidal origin?


If TDGs \Rightarrow on-plane systems should have higher [Fe/H] (Recchi et al. 2015) Recovered differences are not significant but LMC-satellites show a -0.1 dex offset

A link between the VPOS and the MW's merger history?

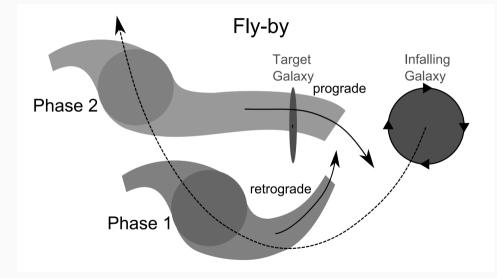
The GSE progenitor could have bring its own population of satellites We do not recover a dynamical connection with accreted GCs

Are the on-plane systems part of a group infall?

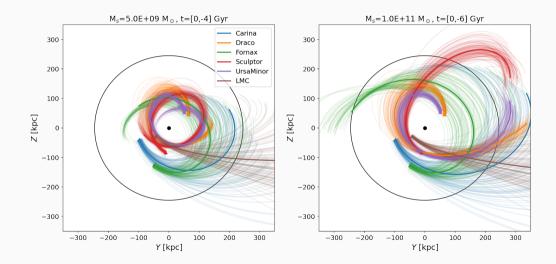
Indirect approach based on a toy-model maximising dynamical friction Too high individual masses for a single pericentric passage, but not as a group

Conclusions

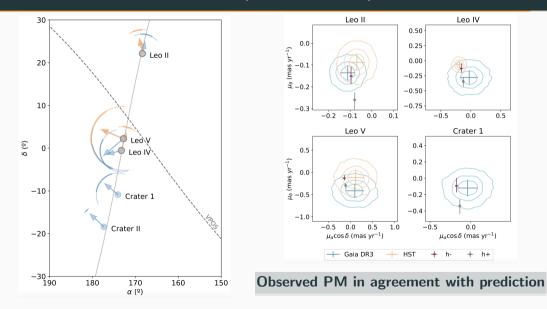
From the comparison of the observed properties between on and off-plane systems:

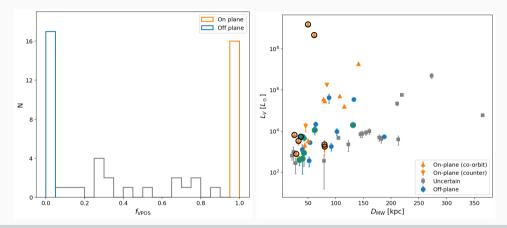

- the large majority of bright MW satellites are on the VPOS
- co-(counter-)orbiting on-plane systems approaching (leaving) the MW, possibly close to pericentre
- Excluding the LMC-system, the on-plane satellites have minimum E-L

Implication for the VPOS as a young structure:


- TDG origin seems unlikely
- An association with the progenitor of GSE remains unclear
- Group infall scenario reminiscent of Greater Magellanic Galaxy suggestion (Lynden-Bell 1976)? → See also E. Vasiliev and M. Pawlowski talks!

Backup


Group infall: Pawlowski et al. (2011) mechanism


Group infall: effects of dynamical friction

Group infall: the Crater-Leo case (Julio et al. 2024)

Milky Way satellites: sample selection

16 systems classified on-plane, 17 resulted off-plane

Uncertain systems have large PM errors due to low-luminosity and/or large distance

Results: correlation matrixes

	L.	Ry (IFe/HJ)		Pericenter Apocenter						Ly Ry (IFe/HJ)			Pericenter Eccentricity				
L _V -	1.0	0.9	0.8	0.6	0.4	0.6	-0.4	-0.3	L _V -	1.0	0.9	0.8	0.6	0.2	0.2	-0.2	-0.2
R _h -	0.8	1.0	0.7	0.5	0.2	0.7	0.1	-0.3	R _h -	0.8	1.0	0.7	0.5	0.0	0.1	0.1	-0.1
([Fe/H]) -	0.1	0.2	1.0	0.7	0.3	0.7	-0.2	0.1	([Fe/H]) -	0.1	0.2	1.0	0.7	0.3	0.4	0.0	0.2
σ _v -	0.4	0.4	0.2	1.0	0.4	0.6	-0.3	0.0	σ_v -	0.4	0.4	0.2	1.0	0.4	0.4	0.0	0.0
Pericenter -	0.7	0.6	-0.1	0.2	1.0	0.5	-0.8	-0.3	Pericenter -	0.6	0.5	-0.1	0.2	1.0	0.5	-0.5	-0.5
Apocenter -	0.3	0.2	-0.1	0.3	0.3	1.0	-0.2	0.1	Apocenter -	0.4	0.3	-0.3	0.3	0.5	1.0	0.4	-0.5
Eccentricity -	-0.3	-0.3	-0.3	-0.3	-0.3	0.8	1.0	0.3	Eccentricity -	-0.3	-0.3	-0.3	-0.1	-0.4	0.5	1.0	0.0
t-last-peri -	0.1	0.3	-0.4	0.1	0.3	-0.2	-0.4	1.0	t-last-peri -	0.1	0.1	-0.1	-0.4	0.0	-0.2	-0.3	1.0