
Container Primer
Giuliano Taffoni

Hands on

To start!

Hands on: gcc

Get GCC image
$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aa18ad1a0d33: Extracting [================================>] 33.98 MB/52.6
MB

15a33158a136: Download complete

f67323742a64: Download complete

c4b45e832c38: Downloading [===================>] 51.59 MB/134.7 MB

e5d4afe2cf59: Download complete

4c0020714917: Downloading [=======>] 30.59 MB/200.4 MB

b33e8e4a2db2: Download complete

c8dae0da33c9: Waiting

• You are downloading a minimalistic Linux distribution (Debian Jessie, as we will see later) on
which has been installed gcc (version 5.4).

• Thanks to Docker’s incremental file system, another container based on Debian Jessie will not
require to download/store it again.

Get gcc Image

• image: a “file” from which you can run a container
• container: an “entity” run from an image

Run gcc

Prepare a test
code…

#include<stdio.h>

int main() {

printf("I run a very complex simulation
and the result is 42\n");

}

Compile the code

Run your code…

Enter in the gcc (5.4) container

Enter in the gcc (5.4) container

Enter in the gcc (5.4) container

When you exit a container, you lose every change to the
container File System

The Dockerfile

The Dockerfile • The Dockerfile is what defines a Docker Container.
Think about it as its source code.

• When you build it, it generates a Docker Image.
When you run a Docker Image, this “becomes” a
Docker Container, as mentioned before.

Dockerfile
examples
• On what is the Gcc (5.4)

container built upon?
• Explore the leafs

Dockerfile
examples
• leaf 2

Dockerfile
examples
• leaf 3

Dockerfile
examples
• leaf 4

Dockerfile
examples
• The root

Dockerfile example:
compile a code

We will now include and compile your test code directly
from a Dockerfile

Build the image

• Let’s now build it. Place the Dockerfile and the “test.c” in a folder named “Test”, then:

…and run it…

$ docker run testcontainer /opt/test.bin

I just ran a very complex simulation and the result is 42

…and share it (old way):

$ docker save testcontainer > testcontainer.tar

$ docker load < testcontainer.tar

Your first container: tag it!

$ docker tag testcontainer gtaff/testcontainer
$ docker push gtaff/testcontainer
The push refers to repository [docker.io/gtaff/testcontainer]
4e139ce93449: Pushed
8e5d12c6cc1e: Pushed
531d0aa62df3: Mounted from library/gcc
2ac9aba62fc1: Mounted from library/gcc
4e778218c153: Mounted from library/gcc
8f816dba9ff6: Mounted from library/gcc
7381522c58b0: Mounted from library/gcc
ecd70829ec3d: Mounted from library/gcc
d70ce8b0dad6: Mounted from library/gcc
18f9b4e2e1bc: Mounted from library/gcc
latest: digest:
sha256:21563d1b6645af4cf73f01cc471b5f1a8bb902f7f1903bac4b9b878433eecf5e
size: 2421

Versioning: hash and tags

If we rebuild the testcontainer, the caching jumps in. It takes few
seconds.

..this is possible thanks to version hashes

Versioning: hash and tags

• A hash is the result of applying an hash function
• A hash function takes some input and generates a fixed-size output, like:

47e0b9046c241cc4653b876c2a8ab01341c00754

• A good hash function allows to virtually never get the same hash from
different inputs.
• In both Git and Docker the input is your code, and and hash represents a

unique (saved) state. Or a particular point in your codebase “history”.
• Then, it happens that hashes can be linked together, forming hierarchies.
• A tag is a friendly name for a hash.

Versioning: hash and tags

Versioning: hash and tags

• Both Git and Docker implement versioning with hashes, which are
fully deterministic, unlike version (incremental) numbers.
• In the Docker ecosystem everything is versioned
• For practical use, also the short hashes are allowed (and commonly

used), which are the first 7 characters for Git (i.e. “47e0b90”) and the
first 12 for Docker.
• If by chance two hashes in the system starts with the same short

hash, you will be required to enter one more character or the full
hash.

Versioning:
hash and

tags

Where do I
save my

Dockerfiles?

..on a versioning system.

There is no other alternative.

Do not work without versioning.

Seriously, don’t.

Use Dropbox or Google Drive if you think that more
professional versioning tools, like Git, are an overkill.

Where do I save my Dockerfiles?

• Docker allows to have everything up and running, including dependencies
etc. with a single command.
• This command trigger a build with a given set of dependencies (the ones

you wrote to install in the Dockerfile)
• Over time, you will probably make changes in your Dockerfiles and in your

code.
• If you use a versioning system, you can jump back in time to a particular
version/hash, build it, and it will run exactly as it was running at that time
• For managing multiple container versions simultaneously, you can use tags

Running a container for a scientific app.

The problem:
• I have two set of data (in this case, dummy data) to fit with an MCMC.
• Data are random sample from a line

y = mx + q.

find m, q is the goal;

• 1.txt is an observation, 2.txt is another observation

Running a container for a scientific app.

The material:

• Dockerfile
• 1.txt, 2.txt some data to analize
• Mcmc.py - a Python based emcee script used for fitting the data. The

environment variable RUN is used by the container to select the file to analize
• Requirements.txt - a list of package that will be installed using pip.

• Output - Corner plot (1..png, 2.png) that contains the results of the analyses.

Running a container for a scientific app.

HOWTO:

$ docker build -t mcmc .

$ docker run -v $PWD/data:/app --env RUN=1 mcmc

$ docker run -v $PWD/data:/app --env RUN=1 mcmc

$ docker run -v $PWD/data:/app --env RUN=2 mcmc

or

then

Docker:
service example

Use an official Python runtime as a parent image
FROM python:latest

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the container at /app
COPY . /app

Install any needed packages specified in requirements.txt
RUN pip install --trusted-host pypi.python.org -r requirements.txt

Make port 80 available to the world outside this container
EXPOSE 80

Define environment variable
ENV NAME World

Run app.py when the container launches
CMD ["python", "main.py"]

$ docker build . -t myapp

$ docker run –-rm –p 9002:80 myapp

$ docker ps

Docker:
service example (2)

Use an official Python runtime as a parent image
FROM python:latest

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the container at /app
COPY . /app

Install any needed packages specified in requirements.txt
RUN pip install --trusted-host pypi.python.org -r requirements.txt

Make port 80 available to the world outside this container
EXPOSE 80

Define environment variable
ENV NAME World

Run app.py when the container launches
CMD ["python", "main.py"]

$ docker build . -t myapp

$ docker run –-rm –p 9002:80 –v$PWD:/data myapp

$ docker ps

Docker-compose basic commands

$ docker compose version

$ docker compose up

$ docker compose down

Yaml example

version: '3'
services:

web:

build: .
ports:

- "5000:5000"

redis:

image: "redis:alpine"

Running a container for a scientific app.

HOWTO:

$ docker compose up
Attaching to mcmc-1, mcmc-2
mcmc-2 | Maximum likelihood estimates:
mcmc-2 | m = 0.282
mcmc-2 | b = 5.064
mcmc-2 | f = 0.535
mcmc-1 | Maximum likelihood estimates:
mcmc-1 | m = 0.282
mcmc-1 | b = 5.064
mcmc-1 | f = 0.535
100%|##############################| 5000/5000 [00:02<00:00, 2299.26it/s]
100%|##############################| 5000/5000 [00:02<00:00, 2314.66it/s]
mcmc-2 exited with code 0
mcmc-1 exited with code 0

Questions?

