
Container Primer
Giuliano Taffoni

The Deal
• We will use Docker as reference, but

the concepts are 100% engine-
agnostic.

• Always interrupt if you have question,
doubts, something not clear,
curiosities. Let’s try to keep it
interactive!

• Over the talk, think about a concrete
use case close to your work. We can
discuss a few at the end.

Outline

• Why do we need a container technology in science?

• What is a container?

• How does a container work?
• Container VS Virtual machines

• Images, containers, volumes and networking
• Container engines: docker, podman, singularity…

The dependency hell problem

Mike is a scientists that wants
to install a new software.

Mike cannot find a precompiled
version that works with his OS

and/or libraries.

Mike ask/Google for help and
get some basic instructions -

like “compile it”.

Mike starts downloading all the
development environment, and
soon realizes that he needs to

upgrade (or downgrade!) some
parts of his main Operating

Systems.

During this process, something
goes wrong.

Mikes spends an afternoon
fixing his own OS, and all the
next day in trying to compile

the software. Which at the end
turns out not to do what he

wanted.

The
dependency
hell problem

One solution for multiple
challenges

• Install a complex scientific pipeline with a large set of
dependencies (…what can goes wrong..)

• Multiple version of the same software or libraries
• Isolated instances of the same application/service

• Complex applications with multiple dependences (DBs, Files,
webapps, messaging…)

Solution spectrum

Solution spectrum: proper requirements

Carefully keep track of what libraries/OS features are used in development and report
them on the documentation, for each release.

Solution spectrum: virtual environments

• Work in a reproducible environment where libraries are the
same for developers and for users. Each release has a virtual
environment definition.

• Requires the user to set up and activate its own
environment, and works only with some libraries (i.e.
Python),

• Not a comprehensive solution and prone to human error

Solution spectrum: virtual environments

• Python programs often use modules and packages outside of the
standard library.
• Python applications require specific versions of a library.
• A single installation can't meet the needs of all applications.

“Virtual Environments: a self-contained directory with a Python
installation for a specific Python version and additional packages.”

Solution spectrum:
virtual environments
Environment Modules for Clusters
(HPC/HTC)

• A tool that simplify shell initialization and
lets users easily modify their environment
during the session with modulefiles.

• Provide simultaneous versions of the
same software without collisions, as each
module is housed entirely in its own
subfolder structure.

Solution spectrum: virtual machine

- Works out-of-the box and does not touch the main OS;
- Allows to quickly test a given software / library;
- Need to download a (big) pre-built, trusted image (no “source” code);
- Requires pre-allocating dedicated memory at startup, and an entire boot;
- Not suitable for much more than just giving the software a try;
- You will not find much software packaged in this way.

Virtual machines with hardware emulation... a bit of over-engineering.

... but we are on the right path. We want this kind of insulation!

Solution spectrum: Containers

Containers are lightweight, standalone, executable packages of
software that include everything needed to run an application:
- code
- runtime
- system tools
- system libraries
- settings etc.
Containers allow to reliably move and distribute software from one
computing environment to another, without the burden of VMs.

Solution spectrum: Containers

Conteiner ecosystem

https://sarusso.github.io/blog/container-engines-runtimes-orchestrators.html

Some definitions

A container engine is a piece of software that accepts user requests, including
command line options, pulls images, and from the end user's perspective runs
the container

A container runtime is a software component which is in charge of managing the
container lifecycle: configuring its environment, running it, stopping it, and so on.

A container orchestrator is a software in charge of managing set of containers
across different computing resources,

Container
enviroments

• If you are running single
containers, you will interact
with a container engine,

• If you are running set of
containers, you will then use
a container orchestrator.

Container for
science…but not
only
• Jane wants to install a new software.

• Jane cannot find a precompiled version that works
with his OS and/or libraries.

• Jane ask/Google for help and finds out that there is a
container for it.

• Jane pulls the container and runs it.

• Jane immediately discovers that the software is/is not
suitable for his research and finds a more appropriate
one (as a container, of course!)

• Jane spends the afternoon writing conclusions on his
very important research using his new software while
enjoying a hot cup of latte.

What is a container?

• A container is a standard unit of software that packages up
code and all its dependencies.

• Containers creates portable isolated environments at
application level and not at server level.

• Insulate a single process from your Operating System, and to:
• Let it live in its own space, including its own network;
• Let it have its own File System with its own libraries;
• Allow to natively access hardware without virtualization;
• Avoid booting an entire Virtual machine and to pre-

allocate dedicated memory.

You might think about them as Virtual Machines in first
approximation → but keep in mind that they are two
completely different beasts.

Dependency
Hell

Virtualization primer

Virtualization, is the ability to simulate a hardware platform,
such as a server, storage device or network resource, in
software. All the functionality is separated (abstracted) from
the hardware and simulated as a “virtual instance” with the
ability to operate just like the hardware solution. A single
hardware platform can be used to support multiple virtual
devices or machines, which are easy to spin up or down as
needed.

Virtual Machine is the software simulation of a computer. It is
able to run an Operating Systems and applications interacting
with the virtualized abstracted resources, not with the physical
resources, of the actual host computer.

Hypervisor (or Virtual Machine Monitor) is a software tool
installed on the physical host system to provide the thin
software layer of abstraction that decouples the OS from the
physical bare-metal. It allows to split a computer in different
separate environment, the Virtual Machines, distributing them
the computer resources HARDWARE

Operating System

App A

VMM

App BVM VM

driver driver

HARDWARE

VMM (Hypervisor)

Guest A
Service

(Privileged)
VM

Guest B

Virtualization types

Full Virtualization: the hypervisor provides complete hardware
abstraction creating simulated hardware devices. The guest OS don’t
know (or care) about the presence of a hypervisor and issue commands
to what it thinks is actual hardware.

Paravirtualization: para means partial. The guest OS is aware that it is a
guest, it recognizes the presence of a hypervisor, and it has drivers to
issue some commands, mainly I/O operations, directly to the host OS,
more efficiently than inside a virtual environment. The guest OS must be
modified

Hardware assisted virtualization: is a type of full virtualization where the
microprocessor architecture has special instructions to aid the
virtualization of the hardware. These hardware extensions help the
hypervisor tackle complex tasks at the processor level rather than
through software emulation

Operating System

Hypervisor

VMM Requests

Containers vs VMs

Container Advantages

Isolation Containers virtualize CPU, memory, storage, and network resources at the OS-level, providing developers
with a sandboxed view of the OS logically isolated from other applications. Developers, using containers, can
create predictable environments isolated from other applications.

Productivity enhancement Containers can include software dependencies needed by the application (specific
versions of programming language runtimes, software libraries) guaranteed to be consistent no matter where the
application is deployed. All this translates to productivity: developers and IT operations teams spend less time
debugging and diagnosing differences in environments, and more time shipping new functionality for users.

Deployment simplicity containers allow your application to be packaged, abstracting away the operating system,
the machine, and even the code itself, so development and deployment are easier because containers can run
virtually anywhere (Linux, Windows, and Mac operating systems; virtual machines or bare metal; developer’s
machine or data centers on-premises; public cloud).

Container Advantages

Easy portability Docker image format for containers further helps with
portability. Docker V2 image manifest is a specification for container images
that allows multi-architecture images and supports content-addressable
images

Operational efficiency and reliability
Containers are perfect for Service Oriented
Architectures/Applications because each
service limited to specific resources can be
containerized. Separate services can be
considered as black boxes.

This arises efficiency because each container
can be health checked and started/stopped
when needed independently from others

Reliability arises because separation and
division of labor allows each service to
continue running even if others are failing,
keeping the application as a whole more
reliable

Container Advantages

Easy Versioning A new container can be packaged for each new application
version including all needed dependencies, modules and libraries at the
“right” version

Security Containers add an additional layer of security since the applications
aren't running directly on the host operating system. There are security
constraint if application running inside containers have root privileges

Containers are
just processes

Just a process $ ps -ef –forest

Interacting with the
container as a
process
• The /proc filesystem in

Linux is a virtual or pseudo
filesystem. It doesn’t contain
real files—instead, it is
populated with information
about the running system.

This is the / of the container

How does container
works?

• How do we make sure that a process running in one
container can’t easily interfere with the operation of
another container or the underlying host?

Linux namespaces

• Linux namespaces allow the operating system to provide a
process with an isolated view of one or more system
resources. Linux currently supports eight namespaces:
Mount, PID, Network, Cgroup, IPC, Time, UTS, User

• NSs restrict a contained process's view of the rest of the
host.

https://man7.org/linux/man-pages/man7/namespaces.7.html

Namespaces

Role of NSs

• The mount (mnt) namespace provides a process with an isolated view of the filesystem.
It can be useful for ensuring that processes don’t interfere with files that belong to other
processes on the host. When using the mnt namespace, a new set of filesystem mounts
is provided for the process in place of the ones it would receive by default.

• The PID namespace allows a process to have an isolated view of other processes
running on the host. Containers use PID namespaces to ensure that they can only see
and affect processes that are part of the contained application.

• network (net) namespaceis responsible for providing a process's network environment
(interfaces, routing, etc.). It is very useful for ensuring that contained processes can bind
the ports they need without interfering with each other, and for verifying that traffic can
be directed to specific applications.

• Control groups (cgroups) are designed to help control a process's resource usage on a
Linux system. In containerization, they’re used to reduce the risk of “noisy neighbors”
(containers that use so many resources that they degrade the performance of other
containers on the same host).

Linux Capabilities
• Capabilities split up the monolithic root privilege into 41 (at the time

of publication) privileges that can be individually granted to processes
or files.

You may be able to drop some or all of these capabilities to help harden your containers (setcap).

Cgroups basics

• Control groups (cgroups) are designed to help control a process's
resource usage on a Linux system.

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-4/

Cgroups basics: limit CPU usage for a
process

$ cgcreate -g cpu:/cpulimited
$ cgcreate -g cpu:/lesscpulimited

cpu controller has a property known as cpu.shares. It is used
by the kernel to determine the share of CPU resources
available to each process across the cgroups. The default
value is 1024.

$ cgset -r cpu.shares=512 cpulimited

$ cgexec -g cpu:cpulimited /usr/local/bin/matho-primes 0 9999999999 >
/dev/null &

split the CPU resources using a 2:1 ratio

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-4/

Cgroups basics: limit access to resources

• Docker offers various options for limiting the amount of CPU time the
container can utilize, but the simplest is the --cpus flag,

• A common denial-of-service attack on Linux systems is known as
a fork bomb:

• cgroups can restrict the number of processes that can be spawned

docker run --name stress --cpus 0.5 -it stressimage /bin/bash

docker run -it --pids-limit 10 ubuntu:22.04 /bin/bash

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-4/

How does container
works?

• Containers are just processes running on your host

• They share the same kernel (OS)

• They are isolated by NS+CG

Container
Engines

1. Docker
1. Evolution from a monolithic project to supporting open-source

ecosystems.
2. Docker Engine (open source for Linux) vs. Docker Desktop

(freemium for Mac and Windows).
3. Root access required (containerd)

2. Podman
1. Daemonless container engine for managing OCI Containers.
2. Offers root and rootless mode for security and usability.
3. User ID (UID) management issues in rootless mode.

3. Containerd and CRI-O
1. Containerd serves as a runtime, not intended for direct usage but

can be accessed via Containerd CLI (ctr).
2. CRI-O behaves similarly, not meant for direct command-line usage;

crictl for debugging.

Container Engines

Singularity
Functions more like a virtual environment than a
container engine.

Limited isolation between containers and host,
affecting security and behavior.

Shares directories, environment variables, and
lacks proper user mapping.

LXD and RKD
LXD manages both containers and virtual
machines for full Linux systems.

RKD (Rocket) was a command-line utility, now an
ended project for running containers using
kernel-level calls.

Container Orchestrators

1.Docker Compose
1. Creates multi-service applications on a single node.
2. Uses a docker-compose.yml file to assemble containers with a dedicated network.
3. Supports only Docker APIs; Podman can work with it by emulating Docker.

2.Docker Swarm
1. Manages multi-node deployments in a cluster of Docker engines called a "swarm."
2. Similar to Docker Compose but suitable for small teams or simple deployments.
3. Supports only Docker APIs.

3.Kubernetes
1. Full-featured container orchestration solution for various settings and network topologies.
2. Supports multiple container runtimes, dropped support for Dockershim in favor of

Containerd.
3. Introduces the concept of a "pod" to the container ecosystem.
4. Challenging to master; can be accessed via CLI and REST APIs.

Container Orchestrators

1. AWS ECS (Elastic Compute Service)
1. Amazon's internal implementation similar to Kubernetes.
2. Requires Docker Engine for managing Amazon VMs or offers pre-built VM

images.
3. Uses Docker Engine, not a container runtime.

2. AWS Fargate
1. A serverless execution of containers on AWS infrastructure.
2. Eliminates concerns about underlying OS/hardware.
3. Shifted from Docker Engine to Containerd with platform version 1.4 in April

2020.

How to run a
container

Get or build a container image (think about it
as a file)

Run the image: this is your container

docker run my_container

..where “docker” can be replaced with your
container engine of choice, e.g Podman.

Note: many engines, if cannot find the image
locally, will automatically look online.

Example:
$ docker run hello-world

Unable to find image 'hello-world:latest' locally latest:
Pulling from library/hello-world

2db29710123e: Pull complete

Digest:
sha256:6d60b42fdd5a0aa8a718b5f2eab139868bb4fa9a03c9fe1a59ed494
6317c4318

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be
working correctly.

Example:

• $ docker run -it python:3.8

• $ docker run --entrypoint /bin/bash -it python:3.8

Main Concept:
Images

• A container image is a static file with executable
code that can create a container;

• A container image is immutable—meaning it
cannot be changed, and can be deployed
consistently in any environment;

• A container is the running version of an Image;
• A container is volatile: once closed it is destroyed.

Main Concept: Images

• When you define a Docker
image, you can use one or more
layers, each of which includes
system libraries, dependencies
and files needed for the
container environment.

• Image layers can be reused for
different projects.

Images

Images

[root@gen10-02 ~]# docker inspect 58a8f3dcd68a

[

{

"Id": "sha256:58a8f3dcd68a25102665617db6b9cc605dac7e5b84a874c456692513d12c990f",

"RepoTags": [

"python:latest"

],

"RepoDigests": [

"python@sha256:6d7fa2d5653e1d0eb464a672ded01f973e49e4a7ded59703c7bdcf6b92eac736"

],

"Parent": "",

"Comment": "buildkit.dockerfile.v0",

"Created": "2023-12-08T04:49:21Z",

"Container": "",

"ContainerConfig": {…

Images

"RootFS": {

"Type": "layers",

"Layers": [

"sha256:7cea17427f83f6c4706c74f94fb6d7925b06ea9a0701234f1a9d43f6af11432a",

"sha256:7c32e0608151e1683f9e1ee78eb507fe9fe73fc10584fc5f09b6b0475b95871b",

"sha256:30f5cd833236dc35f9ab67c205f913fc238902ee71f28a47fdb7d1ecaa9f0776",

"sha256:80bd043d4663600a3f8fa3d36604acf9885cef3f67b8a878d510c07289761972",

"sha256:2c8a14dec1261f607a90c797e90fb81be2b6eb945549f7af8ea518e9b47a53ec",

"sha256:e62b338f9de766465c65156a2eb17ff5a861d30430f11bfe251271f6777d4695",

"sha256:77b3c1d92acfc6e716a2de090ff4477fc2687eb67df752a82777c0e2acc31f6f",

"sha256:8a4ac491bc4903a9c7e758c4c705110399f2608b508a92d2dad023a76b583856"

]

"Architecture": "amd64",

"Os": "linux",

"Size": 1018287322,

"VirtualSize": 1018287322,

"GraphDriver": {

Main Concepts:
Volumes

How to share files with a container? → volumes

Example

• Make your home folder visible from within a container

$ docker run -it -v $HOME:/data python:3.8

$ docker run -v $HOME:/data --entrypoint /bin/bash -it python:3.8

Example

$ docker run -it -v $HOME:/data python:3.8

Python 3.8.12 (default, Dec 21 2021, 10:45:09)

[GCC 10.2.1 20210110] on linux

Type "help", "copyright", "credits" or
"license" for more information.

>>> import os

>>> os.listdir('/data’)

['Applications', 'Desktop','Documents',
'Downloads', 'Dropbox', 'iCloud', 'Library',
'Movies', 'Music', 'Pictures', 'Public']

Main Concepts

• How to access servers* in a containers? → port mapping

Examples

$ docker run -p 9001:8888 jupyter/tensorflow-notebook:tensorflow-2.4.1

$ docker run -p 9002:8888 jupyter/tensorflow-notebook:tensorflow-2.4.3

Main Concepts: Performace aspects

$ python3 -m unittest discover
..
........ --
Ran 90 tests in 41.405s

$ python3 -m unittest discover
..
........ --
Ran 90 tests in 34.108s

Host

Container

Main
Concepts
How to share containers?
→ registries (the GitHub
for software containers)

The Image Registry

• Docker Registry is where the Docker Images are stored. The Registry can
be either a user’s local repository or a public repository like a Docker Hub
allowing multiple users to collaborate in building an application. Even with
multiple teams within the same organization can exchange or share
containers by uploading them to the Docker Hub.

• Docker Hub is Docker’s very own cloud repository similar to GitHub.

The docker architecture: registry

DockerHub Registry

Docker

• Modern containerization solution, open source + freemium
• Extremely popular, the “de facto” containerization standard
• Incremental File System
• Plenty of software on Docker Hub
• Native on Linux
• Almost native on Macs post-2011 and Windows 10 (through a light

VM)
→ Issues with new Apple M1 (ARM) chips!

Docker

• Relies on a system daemon to manage containers
• Running containers are seen as (micro)services
• Containers have an IP address by default
• Extensive support for networking between containers
• Requires a privileged user (do not expect to do a “docker run” on

clusters)
• Loads of orchestrators (docker-compose, kubernetes..)

Docker commands

• docker build: Build a container

• docker pull: Pull a container (from a registry)

• docker run: Run a container (and execute the default command, or a custom one)

• docker ps: List running containers

• docker exec: Run a command in a running container

• docker stop: Stop a running container

• docker rm: Remove a container

• docker image rm: Remove an image

• docker image ls: list local images

Orchestratio:
docker-compose
• Docker Compose is a tool that allows

you to run multi-container application
environments based on definitions set
in a YAML file.

• It uses service definitions to build fully
customizable environments with
multiple containers that can share
networks and data volumes.

Running complex apps

• Without compose
• Build and run one container at a

time
• Manually connect containers

together
• Must be careful with

dependencies and start up order

• With compose
• Define multi container app in

compose yml file
• Single command to deploy entire

app
• Handles container dependencies
• Works with Docker Swarm,

Networking, Volumes, Universal
Control Plan

What is docker-compose?

A tool for defining and
running multi- container
Docker applications

With Compose, you use a
YAML file to configure your
application's services

Compose works in all
environments: production,
staging, development, testing,
as well as CI workflows.

With a single command, you
create and start all the
services from your
configuration

Bulding blocs of compose

Container orchestration with compose

$ docker compose up

Questions

