FTTTTTENTTITTT T (R T
' 'r*" ERiL "‘;M‘; !
NI HIR M ‘“| ‘ (| HHHE
(};‘ il i ‘:\ " 1 j‘ 1 ‘
A i E0E N -

i

]|

i

(X

I ?;
(108 | he

The Deal

 We will use Docker as reference, but > | 5;[,
the concepts are 100% engine-
agnostic.

Always interrupt if you have question,
doubts, something not clear,
curiosities. Let’s try to keep it
interactive!

Over the talk, think about a concrete
use case close to your work. We can
discuss a few at the end.

Outline

 Why do we need a container technology in science?
 What is a container?

 How does a container work?

e Container VS Virtual machines

* Images, containers, volumes and networking

e Container engines: docker, podman, singularity...

The dependency hell problem

Web Server Database Messaging Orchestration
no d Cl ‘mongoDB é Q
EXPress

The

dependency
hell problem

Hardware Infrastructure

e

One solution for multiple
challenges)

*m |

* Install a complex scientific pipeline with a large set of
dependencies (...what can goes wrong..)

* Multiple version of the same software or libraries
* |solated instances of the same application/service

* Complex applications with multiple dependences (DBs, Files,
webapps, messaging...)

Solution spectrum

- - - - — —J

Proper Virtual Statlcally C
.) ontainerization VMs VMs with
requirements environments linked hardware
binaries

emulation

Solution spectrum: proper requirements

VAN

Carefully keep track of what libraries/OS features are used in development and report

— them on the documentation, for each release.

Proper
requirements

Solution spectrum: virtual environments

VAN

-

Virtual
environments

Work in a reproducible environment where libraries are the
same for developers and for users. Each release has a virtual
environment definition.

Requires the user to set up and activate its own
environment, and works only with some libraries (i.e.
Python),

Not a comprehensive solution and prone to human error

Solution spectrum: virtual environments

* Python programs often use modules and packages outside of the
standard library.

* Python applications require specific versions of a library.

* A single installation can't meet the needs of all applications.

“Virtual Environments: a self-contained directory with a Python
installation for a specific Python version and additional packages.”

Solution spectrum: 0oe

-zsh ® 1 root@ameonra:~ (ssh) 2
. . autoconf-2.69-gcc-4.8.5-6qup7ym util-macros-1.19.3-gcc-4.8.5-slua3dyf
VI rt u a | e nVl ro n m e ntS autoconf-archive-2022.02.11-gcc-4.8.5-dkhfrzx xz-5.2.5-gcc-4.8.5-jvkpqlg
automake-1.16.5-gcc-4.8.5-toldqqm zlib-1.2.12-gcc-4.8.5-5vrogen
berkeley-db-18.1.40-gcc-4.8.5-syu3l2q zstd-1.5.2-gcc-4.8.5-wqmbqfp

boost-1.79.0-gcc-4.8.5-xcpxsnh
bzip2-1.0.8-gcc-4.8.5-uge7nkh

EnVironment MOdUIeS fOF C|L|SterS cfitsio-3.49-gcc-4.8.5-eig3a2l
ke-3.23.1-gcc-4.8.5-ffd3a5
(H PC/HTC) Z:i—;lugins—légfl—gcc—‘t.8.St—lu21wbae
conmon-2.0.30-gcc-4.8.5-17x2f6r

* A tool that simplify shell initialization and Al -7.43.9-9cc-4. 8.3 ctdion

diffutils-3.8-gcc-4.8.5-z33r5zk

lets users easily modify their environment |[EEtREeEeitEits

fftw-2.1.5-gcc-4.8.5-1vnhcob

during the session with modulefiles. Fftw-3.3.10-gcc-4.8.5-pafoeru
fftw-3.3.10-gcc-4.8.5-w3zmayw
H H : awk-5.1.1-gcc-4.8.5-pcwdv3o
* Provide simultaneous versions of the e i
1 1cl gdbm-1.19-gcc-4.8.5-rl1l1fyép
same softwa re W|thoqt coI.I|5|-ons, 39S BACH Lm0
module is housed entirely in its own git-2.35.2-gcc-4.8.5-gpnhuef
glib-2.72.1-gcc-4.8.5-bexymor
subfolder structure. gw-6.2,1-gcc-4.8.5-Lsiwfez

gnupg-2.3.4-gcc-4.8.5-jb4foze

Solution spectrum: virtual machine

- Works out-of-the box and does not touch the main OS; i i

- Allows to quickly test a given software / library;

- Need to download a (big) pre-built, trusted image (no “source” code);

- Requires pre-allocating dedicated memory at startup, and an entire boot; — —

- Not suitable for much more than just giving the software a try; VMs VMs with

- You will not find much software packaged in this way. hardware
emulation

Virtual machines with hardware emulation... a bit of over-engineering.

... but we are on the right path. We want this kind of insulation!

Solution spectrum: Containers

Containers are lightweight, standalone, executable packages of

software that include everything needed to run an application:

Containers allow to reliably move and distribute software from one
computing environment to another, without the burden of VMs.

code

runtime

system tools
system libraries
settings etc.

Containerization

Solution spectrum: Containers

Containerization

Podman
(closer to a process)

Conteiner ecosystem

o, o ,
. Orchestrators .. Engines |
! | [D | ;
| Docker | ! , . . !
! | compose/ AWS ECS Kubernetes AWS |1 1| Docker | | Contaimerd | | CREO | | pogman | | Singularity,
! Swarm Fargate | : ctr crictl LXD, RKT :

__

Runtimes

Containerd*

. . Direct execution
D°°k‘?f .LXD Singularity :
(shim runtime, (with LXE as .) or internal
} - (shim runtime) .
deprecated) shim runtime) runtimes

RunC** o gVisor**
(default) Kata (with runsc)

Notes Runtime selection examples
* Also known as high-level container runtimes. . . $ kubelet --container-runtime-endpoint=unix:///run/lxe.soc
** Also known as low-level container runtimes. Running container $ docker run --runtime kata-runtime
*** Small command line tools which make Container and $ podman --runtime /usr/bin/kata-runtime
CRI-O usable as engines, from a user perspective. $ ctr run --runtime io.containerd.run.kata.v2

https://sarusso.github.io/blog/container-engines-runtimes-orchestrators.html

Some definitions

1l

([

A container engine is a piece of software that accepts user requests, including
command line options, pulls images, and from the end user's perspective runs
the container

A container runtime is a software component which is in charge of managing the
container lifecycle: configuring its environment, running it, stopping it, and so on.

A container orchestrator is a software in charge of managing set of containers
across different computing resources,

—————————————————————————————

Single container

Container
Engine

l

Container
Runtime

l

Running
container

—————————————————————————————

Set of containers

Container
Orchestrator

l

I
]
]
]
I
]
I
]
]
|
]
I
|
I
I
|
I
I
|
I
]
| .
: Container
I
|
I
I
]
I
|
|
I
|
I
]
I
I
I
I
I
]
I

Runtime

l

Running
container

Container
enviroments

* If you are running single
containers, you will interact
with a container engine,

 If you are running set of
containers, you will then use
a container orchestrator.

Container for
science...but not
only

* Jane wants to install a new software.

e Jane cannot find a precompiled version that wo
with his OS and/or libraries.

* Jane ask/Google for help and finds out that there is a
container for it.

e Jane pulls the container and runs it.

* Jane immediately discovers that the software is/is not
suitable for his research and finds a more appropriate
one (as a container, of course!) '

* Jane spends the afternoon writing conclusions on his
very important research using his new software while
enjoying a hot cup of latte.

N
>

What is a container?

e A container is a standard unit of software that packages up
code and all its dependencies.

e Containers creates portable isolated environments at
application level and not at server level.
* Insulate a single process from your Operating System, and to:
* Letitlive inits own space, including its own network;
* Let it have its own File System with its own libraries;
* Allow to natively access hardware without virtualization;

* Avoid booting an entire Virtual machine and to pre-
allocate dedicated memory.

You might think about them as Virtual Machines in first
approximation - but keep in mind that they are two
completely different beasts.

Dependency

Hell

Container

Web Server

n de
EXPress

Lios | Deps)

Container Container Container
Database Messaging Orchestration
’ mongo DB
A <
CouchDB

L | Do

Lo [[oeps]

Docker

Hardware Infrastructure

Virtualization primer

Virtualization, is the ability to simulate a hardware platform,
such as a server, storage device or network resource, in
software. All the functionality is separated (abstracted) from
the hardware and simulated as a “virtual instance” with the
ability to operate just like the hardware solution. A single
hardware platform can be used to support multiple virtual
devices or machines, which are easy to spin up or down as
needed.

Virtual Machine is the software simulation of a computer. It is
able to run an Operating Systems and applications interacting

with the virtualized abstracted resources, not with the physical
resources, of the actual host computer.

Hypervisor (or Virtual Machine Monitor) is a software tool
installed on the physical host system to provide the thin
software layer of abstraction that decouples the OS from the
physical bare-metal. It allows to split a computer in different
separate environment, the Virtual Machines, distributing them
the computer resources

Service
(Privileged)
VM

Guest B

VMM (Hypervisor)

Operating System

Virtualization types

Full Virtualization: the hypervisor provides complete hardware
abstraction creating simulated hardware devices. The guest OS don’t
know (or care) about the presence of a hypervisor and issue commands
to what it thinks is actual hardware.

Paravirtualization: para means partial. The guest OS is aware that it is a
guest, it recognizes the presence of a hypervisor, and it has drivers to
issue some commands, mainly I/O operations, directly to the host OS,
more efficiently than inside a virtual environment. The guest OS must be
modified

Hardware assisted virtualization: is a type of full virtualization where the
microprocessor architecture has special instructions to aid the
virtualization of the hardware. These hardware extensions help the
hypervisor tackle complex tasks at the processor level rather than
through software emulation

Ring 3
User Applications

™)

Ring 1
Operating System

Direct Execution
of

VMM Requests Host Computer
System Hardware

Direct Execution
+— of

User Requests

Containers vs VMs

Virtual Machines Software Containers
{ Application 1 Application 2 Application 3 Container Engine
}r Dependencies Dependencies Dependencies Container Container Container
| Guest(VM)OS | | Guest(vM)OS | | Guest(vM)Os | Application 1 | | Application 2 Application 3
Virtual Machines Engine (Hypervisor) Dependencies Dependencies
{ Host OS } —{ Host OS —
| Hardware Hardware

Container Advantages

Containers virtualize CPU, memory, storage, and network resources at the OS-level, providing developers
with a sandboxed view of the OS logically isolated from other applications. Developers, using containers, can
create predictable environments isolated from other applications.

Containers can include software dependencies needed by the application (specific
versions of programming language runtimes, software libraries) guaranteed to be consistent no matter where the

application is deployed. All this translates to productivity: developers and IT operations teams spend less time
debugging and diagnosing differences in environments, and more time shipping new functionality for users.

containers allow your application to be packaged, abstracting away the operating system,
the machine, and even the code itself, so development and deployment are easier because containers can run
virtually anywhere (Linux, Windows, and Mac operating systems; virtual machines or bare metal; developer’s
machine or data centers on-premises; public cloud).

Container Advantages

Docker image format for containers further helps with
portability. Docker V2 image manifest is a specification for container images
that allows multi-architecture images and supports content-addressable
images

Containers are perfect for Service Oriented
Architectures/Applications because each
service limited to specific resources can be
containerized. Separate services can be
considered as black boxes.

This arises because each container
can be health checked and started/stopped
when needed independently from others

arises because separation and
division of labor allows each service to
continue running even if others are failing,
keeping the application as a whole more
reliable

Container Advantages

A new container can be packaged for each new application
version including all needed dependencies, modules and libraries at the
“right” version

Containers add an additional layer of security since the applications
aren't running directly on the host operating system. There are security
constraint if application running inside containers have root privileges

[root@genl@-02 ~]# docker run --rm -d nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx

1f7ce2fad4bab: Pull complete CO nta | ners are

9b16c94bb686: Pull complete .
9a59d19f9c5b: Pull complete JUSt pI’OCESSGS
9ea27b@74f71: Pull complete

cbedf33e2524: Pull complete

84b1ff10387b: Pull complete

517357831967: Pull complete

Digest: sha256:10d1f5b58f74683ad34eb29287e07dable90f10at

Status: Downloaded newer image for nginx:latest
6074c0f589361c9d7ed6a35¢c632a2b604f5cf4bb54bd7033a1996ddS

[root@genl@-02 ~]# ps -fC nginx
UID PID PPID C STIME TTY
root 91326 91310 18:28
101 91372 91326 18:28
101 91373 91326 18:28
101 91374 91326 18:28
101 91375 91326 18:28
101 91376 91326 18:28
101 91377 91326 18:28
101 91378 91326 18:28
101 18:28

CMD

nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:

=
¢
=
m

3388888888

SIS IS IS RS RS RS I S RS
>3SSS3S3S8
3383838388

N N N N N N N N N N N N N N N

0
0
0
9
0
0
0
0
0
0
0
)
0
0
9

Just a process

SSSSSSSS3SSS38S
33SSSSS33SSSS3S
1S88338888888888

nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:

///////l///////

$ ps -ef —-forest

worker
worker
worker
worker
worker
worker
worker
worker
worker
worker
worker
worker
worker
worker

_ nginx: master process nginx -g daemon off;

process
process
process
process
process
process
process
process
process
process
process
process
process
process

[root@genl0-02 ~]# 1s /proc/

buddyinfo

cgroups
cmdline
consoles
cpuinfo
crypto
devices
diskstats
dma

execdomains
fb

filesystems

interrupts
iomem
ioports

kallsyms
kcore

keys
key-users
kmsg
kpagecount
kpageflags
loadavg

Interacting with the
container as a
process

* The /proc filesystemin
Linux is a virtual or pseudo
filesystem. It doesn’t contain
real files—instead, it is
populated with information
about the running system.

This is the / of the container

[root@genl0-02 ~]# cd /proc/91326/root/

[root@genl0-02 root]# ls

bin 1ib32 1ibx32
lib 1ibo4

[root@gen10-02 root]#

H oW dOeS CO nta | Nner How do we make sure that a process running in one

container can’t easily interfere with the operation of
works? another container or the underlying host?

SECCOMP

APPARMOR/SELINUX

CGROUPS

CAPABILITIES

PROCESS

LInux namespaces

* Linux namespaces allow the operating system to provide a
process with an isolated view of one or more system
resources. Linux currently supports eight namespaces:
Mount, PID, Network, Cgroup, IPC, Time, UTS, User

* NSs restrict a contained process's view of the rest of the
host.

https://man7.org/linux/man-pages/man7/namespaces.7.html

Namespaces

[root@genl0-02 ~]# lsns

NS TYPE NPROCS COMMAND
4026531836 pid 921 /usr/1ib/systemd/systemd --switched-root --deserialize
4026531837 user 1018 /usr/1ib/systemd/systemd --switched-root --deserialize
4026531838 uts 921 /usr/1ib/systemd/systemd --switched-root --deserialize
4026531839 1ipc 921 /usr/1ib/systemd/systemd --switched-root --deserialize
4026531840 mnt 917 /usr/1ib/systemd/systemd --switched-root --deserialize
4026531856 mnt 1 kdevtmpfs
4026532052 net 921 /usr/lib/systemd/systemd --switched-root --deserialize
4026533735 mnt 1 /usr/sbin/ntpd -u ntp:ntp -g

4026533736 mnt 2 /usr/sbin/NetworkManager --no-daemon
4026533752 mnt 97 nginx: master process nginx -g daemon
4026533753 uts 97 nginx: master process nginx -g daemon
4026533754 1ipc 97 nginx: master process nginx -g daemon
4026533755 pid 97 nginx: master process nginx -g daemon
4026533757 net 97 nginx: master process nginx -g daemon

Role of NSs

* The mount (mnt) namespace provides a process with an isolated view of the filesystem.
It can be useful for ensuring that processes don’t interfere with files that belong to other
processes on the host. When using the mnt namespace, a new set of filesystem mounts
Is provided for the process in place of the ones it would receive by default.

* The PID namespace allows a process to have an isolated view of other processes
running on the host. Containers use PID namespaces to ensure that they can only see
and affect processes that are part of the contained application.

* network (net) namespaceis responsible for providing a process's network environment
(interfaces, routing, etc.). It is very useful for ensuring that contained processes can bind
the ports they need without interfering with each other, and for verifying that traffic can
be directed to specific applications.

e Control groups (cgroups) are designed to help control a process's resource usage on a
Linux system. In containerization, they’re used to reduce the risk of “noisy neighbors”
(containers that use so many resources that they degrade the performance of other
containers on the same host).

Linux Capabilities

e Capabilities split up the monolithic root privilege into 41 (at the time
of publication) privileges that can be individually granted to processes
or files.

[root@genl@-02 ~]# /usr/bin/pscap

ppid pid name command capabilities
27455 5396 root sshd full
5396 5398 root bash full
1 5518 root screen full
5518 5519 root bash full
5519 5622 root perl full
5622 5648 root bash full
5648 5651 root beegfs-ctl/Main full
5622 5670 root bash full
5670 5674 root beegfs-ctl/Main full
5622 5898 root bash full
5898 5909 root beegfs-ctl/Main full
27455 6076 root sshd full
6076 6078 root bash full
1. 6192 root screen full
1 28726 root slurmd full

1 28727 root agetty full

1 28730 root agetty full
[root@genl@-02 ~]# /usr/bin/pscap | grep -i nginx
10438 10456 root nginx chown, dac_override, fowner, fsetid, kill, setgid, setuid, setpcap, net_bind_service
, het_raw, sys_chroot, mknod, audit_write, setfcap

You may be able to drop some or all of these capabilities to help harden your containers (setcap).

Cgroups basics

e Control groups (cgroups) are designed to help control a process's
resource usage on a Linux system.

rorym in & in A

lscgroup
cpuset, cpu, io, memory, hugetlb, pids,rdma,misc
cpuset, cpu,io,memory, hugetlb, pids, rdma, misc
cpuset, cpu, io, memory, hugetlb, pids,rdma,misc

cpuset, cpu, io,memory, hugetlb, pids, rdma,misc

cpuset, cpu,io,memory, hugetlb, pids,rdma,misc:
cpuset, cpu,io,memory, hugetlb, pids,rdma,misc:
cpuset, cpu, io, memory, hugetlb, pids,rdma,misc:
cpuset, cpu, io, memory, hugetlb, pids,rdma,misc:
cpuset, cpu,io,memory, hugetlb, pids,rdma,misc:
cpuset, cpu,io,memory, hugetlb, pids,rdma,misc:
cpuset, cpu,io,memory, hugetlb, pids,rdma,misc:

2/
: /sys—fs—fuse-connections.mount
:/sys—kernel-config.mount

cpuset, cpu, io, memory, hugetlb, pids,rdma,misc:

~ took 26s

/sys—kernel-debug.mount

: /dev-mqueue.mount
/user.
/user.
/user.
/user.
/user.
/user.
/user.

slice

slice/user-1000.
slice/user-1000.
slice/user-1000.
slice/user-1000.
slice/user-1000.
slice/user-1000.

slice

slice/user@l0oeo.
slice/user@l0eo.
slice/user@leeo.
slice/user@loeo.
slice/user@l0eo.

” ATATA

service

service/user.slice
service/app.slice
service/app.slice/dbus.socket
service/app.slice/dbus.service

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-4/

Cgroups basics: limit CPU usage for a
process

$ cgcreate -g cpu:/cpulimited
$ cgcreate —-g cpu:/lesscpulimited

cpu controller has a property known as cpu.shares. It is used
by the kernel to determine the share of CPU resources
available to each process across the cgroups. The default
value is 1024,

split the CPU resources using a 2:1 ratio
$ cgset -r cpu.shares=512 cpulimited ’

$ cgexec —-g cpu:cpulimited /usr/local/bin/matho-primes 0 9999999999 >
/dev/null &

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-4/

Cegroups basics: limit access to resources

* Docker offers various options for limiting the amount of CPU time the
container can utilize, but the simplest is the --cpus flag,

docker run --name stress --cpus 0.5 -it stressimage /bin/bash

A common denial-of-service attack on Linux systems is known as
a fork bomb:

e cgroups can restrict the number of processes that can be spawned

docker run -it --pids-limit 10 ubuntu:22.04 /bin/bash

https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-4/

e Containers are just processes running on your host

I How does container
* They share the same kernel (OS)

?
WO rkS . * They are isolated by NS+CG

SECCOMP

APPARMOR/SELINUX

CGROUPS

CAPABILITIES

PROCESS

1. Docker

1. Evolution from a monolithic project to supporting open-source
ecosystems.

2. Docker Engine (open source for Linux) vs. Docker Desktop
(freemium for Mac and Windows).

3. Root access required (containerd)
. 2. Podman
1. Daemonless container engine for managing OCI Containers.
] 2. Offers root and rootless mode for security and usability.
CO Nntalner 3. User ID (UID) management issues in rootless mode.

3. Containerd and CRI-O

Engines .

. Containerd serves as a runtime, not intended for direct usage but
can be accessed via Containerd CLI (ctr).

2. CRI-O behaves similarly, not meant for direct command-line usage;
crictl for debugging.

Container Engines

" 4

Singularity LXD and RKD

Functions more like a virtual environment than a LXD manages both containers and virtual
container engine. machines for full Linux systems.

Limited isolation between containers and host, RKD (Rocket) was a command-line utility, now an
affecting security and behavior. ended project for running containers using

. . . . kernel-level calls.
Shares directories, environment variables, and ernel-level calls

lacks proper user mapping.

Container Orchestrators

1.Docker Compose
1. Creates multi-service applications on a single node.
2. Uses a docker-compose.yml file to assemble containers with a dedicated network.
3. Supports only Docker APIs; Podman can work with it by emulating Docker.

2.Docker Swarm
1. Manages multi-node deployments in a cluster of Docker engines called a "swarm."

2. Similar to Docker Compose but suitable for small teams or simple deployments.
3. Supports only Docker APIs.

3.Kubernetes
1. Full-featured container orchestration solution for various settings and network topologies.

2. Supports multiple container runtimes, dropped support for Dockershim in favor of
Containerd.

3. Introduces the concept of a "pod" to the container ecosystem.
4. Challenging to master; can be accessed via CLI and REST APIs.

Container Orchestrators

1. AWS ECS (Elastic Compute Service)

1. Amazon's internal implementation similar to Kubernetes.

2. Requires Docker Engine for managing Amazon VMs or offers pre-built VM
images.

3. Uses Docker Engine, not a container runtime.

2. AWS Fargate

1. A serverless execution of containers on AWS infrastructure.
2. Eliminates concerns about underlying OS/hardware.

3. Shifted from Docker Engine to Containerd with platform version 1.4 in April
2020.

Get or build a container image (think about it
as a file)

Run the image: this is your container

How to run a docker run my container
container

..where “docker” can be replaced with your
container engine of choice, e.g Podman.

Note: many engines, if cannot find the image
locally, will automatically look online.

Example:

S docker run hello-world

Unable to find image 'hello-world:latest' locally latest:
Pulling from library/hello-world

2db29710123e: Pull complete

Digest:
sha?56:0d00b42fddbalaa88a’718b5f2eabl39868bb4dfa%9a03c9felab9%ed494
©6317c4318

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be
working correctly.

Example:

* $ docker run -it python:3.8

* $ docker run --entrypoint /bin/bash -it python:3.8

Main Concept:
lmages

A container image is a static file with executable
code that can create a container;

A container image is immutable—meaning it
cannot be changed, and can be deployed
consistently in any environment;

A container is the running version of an Image;

A container is volatile: once closed it is destroyed.

Main Concept: Images

: - * When you define a Docker
Shiny application :

image, you can use one or more
layers, each of which includes
system libraries, dependencies

\@‘7 and files needed for the
S’ Run-time system libraries container environment.

& Build-time libraries & R package dependencies
N

R & build tools . Image layers .can be reused for
different projects.

Base image: Ubuntu

© Analythium

[root@genl0-02 ~]# docker image 1s
REPOSITORY TAG IMAGE ID CREATED

python latest 58a8f3dcd68a 4 days ago

ubuntu latest b6548eacb063 11 days ago
nginx latest abbd71f48f68 3 weeks ago
python 348 8ablcdel3424 7 weeks ago
bp_sim latest 0329a2e2d677 2 years ago
<none> <none> 48762b1760fe 2 years ago
<none> <none> 210634dbbeec 2 years ago

INEIES

[root@genl0-02 ~]# docker inspect 58a8f3dcd68a
[

"Id": "sha256:58a8f3dcd68a25102665617db6b9cc605dac7ebb84a874c456692513d12c990£",
"RepoTags": [
"python:latest"
1,
"RepoDigests": [
"pythond@sha256:6d7fa2d5653e1d0ebd464a672ded01£973e49e4a7ded59703c7bdcfob92eac7/36"
1,
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2023-12-08T04:49:21z2",
"Container": "",

"ContainerConfig": {..

"RootFS": {

"Type": "layers",

"Layers": [

"sha256:
"sha256:
"sha256:
"sha256:

"sha2?256
"sha2?256

]

"Architecture":

"Size":

Tceal7427£83f6cd4706c74£94fbod7925b06€a%9a0701234f1a9d43f6afl1432a",

7c32e0608151e1683f9elee78eb507fe9fe73fc10584£c5£09b6b0475095871b",
30£5cd833236dc35£9ab67¢c205£913£c238902ee71£28a4d47fdb7dlecaa9f0776",
80bd043d4663600a3£f8fa3d36604acf9885cef3f67b8a878d510c07289761972",

:2c8al4decl261f607a90c797e90fb81be’2b6eb945549f7af8eab18e9%9b47a53ec",
:62b338£9de766465c65156a2ebl7£f5a861d30430£11bfe251271£f6777d4695",
"sha256:
"sha256:

77b3cld9%2acfcbe’716a2de090££4477£c2687ebo67df752a82777c0e2acc31fo6f",
8a4ac491bcd903a9c7e758c4c705110399f2608b508a92d2dad023a76b583856"

"amdo4d",

"Os": "linux",

1018287322,
"VirtualSize": 1018287322,

"GraphDriver": {

Main Concepts: How to share files with a container? — volumes
Volumes

Container Engine
Container Container Container
Application 1 I Application 2 '. Application 3
We are creating a bridge Dependfﬂfencies Dependencies
"""""""""" " hostos
Hardware

Example

« Make your home folder visible from within a container

$ docker run -it -v SHOME:/data python:3.8

$ docker run -v $HOME:/data --entrypoint /bin/bash -it python:3.8

Example

Bu
S docker run -it -v SHOME:/data python:3.8

Python 3.8.12 (default, Dec 21 2021, 10:45:009)
[GCC 10.2.1 20210110] on linux

Success

St

rate
Busi

Type "help", "copyright", "credits" or
"license" for more information.

>>> 1mport os
>>> os.listdir('/data’)

['Applications', 'Desktop', 'Documents',
'Downloads', 'Dropbox', 'iCloud', 'Library',
'Movies', 'Music', 'Pictures', 'Public']

Main Concepts

« How to access servers* in a containers? — port mapping

Container Engine
Container Container Container
. Application 1 I Application 2 *. Application 3
We are creating a bridge Depenéencies Dependencies
"""""""""" " hostos
Hardware

Examples

$ docker run -p 9001:8888 jupyter/tensorflow-notebook:tensorflow-2.4.1

$ docker run -p 9002:8888 jupyter/tensorflow-notebook:tensorflow-2.4.3

Main Concepts: Performace aspects

$ python3 -m unittest discover

Ran 90 tests in 41.405s

$ python3 -m unittest discover

Ran 90 tests in 34.108s

Main
Concepts

How to share containers?
— registries (the GitHub
for software containers)

< C & hub.docker.com

Docker Hub is the world's largest
library and community for container images

> 7 20 :

- @Otpine. n .

ubuntu
Official

$ 1B+

hello-world
>hello,
world Official

$ 1B+

python

mysql
Official Official
$ 1B+ $ 1B+
registry mariadb
et 4
21 official vaoos Officia
gl [* 1B+

postgres

The Image Registry

* Docker Registry is where the Docker Images are stored. The Registry can
be either a user’s local repository or a public repository like a Docker Hub
allowing multiple users to collaborate in building an application. Even with
multiple teams within the same organization can exchange or share
containers by uploading them to the Docker Hub.

» Docker Hub is Docker’s very own cloud repository similar to GitHub.

The docker architecture: registry

Client Docker Host

Docker build -----pgr. Docker deamon |
Docker pull a

Socke S
REGIS‘\'RYT

Docker run

DockerHub Registry

& — C & hub.docker.com/search?q=pytorch&type=image > % O :

Wdocker:' b Q pytorch Explore Pricing Signin

@ Docker [=] containers M Plugins

Filters 1 - 25 of 5,089 results for pytorch. Clear search Best Match v
Images
| Verified Publisher @ a bitnami/pytorch @ Verified Publisher 500K+ 13
Downloads Stars
‘ Official Images @ bitnami By Bitnami * Updated a day ago

Vmor

Official Images Published By Docker
Bitnami PyTorch Docker Image
Categories @ Container Linux x86-64
Analytics

Application Frameworks

Application Infrastructure graphcore/pytorch €@ Verified Publisher 14K 1
Downloads Star

Application Services By Graphcore * Updated 2 months ago
Ease Images The Poplar® SDK plus PyTorch for IPUs.
Databases x

] r nu 64
DevOps Tools

Featured Images

Messaging Services

avmmmsidaclmbaveh avma manarea w1 A \rasifiad Buklichas a’5 7

Docker &

docker

 Modern containerization solution, open source + freemium

* Extremely popular, the “de facto” containerization standard
* Incremental File System

* Plenty of software on Docker Hub

* Native on Linux

* Almost native on Macs post-2011 and Windows 10 (through a light
VM)

— Issues with new Apple M1 (ARM) chips!

Docker &

docker

* Relies on a system daemon to manage containers

* Running containers are seen as (micro)services

e Containers have an IP address by default

* Extensive support for networking between containers

* Requires a privileged user (do not expect to do a “docker run” on
clusters)

* Loads of orchestrators (docker-compose, kubernetes..)

Docker commands

docker

* docker build: Build a container

* docker pull: Pull a container (from a registry)

 docker run: Run a container (and execute the default command, or a custom one)
e docker ps: List running containers

* docker exec: Run a command in a running container

e docRer stop: Stop a running container

 docker rm: Remove a container

 dockRer image rm: Remove an image

 docker image Lls: list local images

Orchestratio:
docker-compose

* Docker Compose is a tool that allows
you to run multi-container application

environments based on definitions set
in a YAML file.

* It uses service definitions to build fully
customizable environments with

multiple containers that can share
networks and data volumes.

Running complex apps

* Without compose * With compose
* Build and run one container at a e Define multi container app in
time compose yml file
* Manually connect containers * Single command to deploy entire
together app
* Must be careful with * Handles container dependencies
dependencies and start up order « Works with Docker Swarm,
Networking, Volumes, Universal
Control Plan

m
ol é@
m

Sll—

What is docker-compose?

A tool for defining and
running multi- container
Docker applications

Compose works in all
environments: production,
staging, development, testing,
as well as Cl workflows.

With Compose, you use a
YAML file to configure your
application's services

With a single command, you
create and start all the
services from your
configuration

Bulding blocs of compose

\ 4
&
A ‘/ﬁ

£
B € 1

Services Volumes Networking

Container orchestration with compose

containers:
web:

lﬁﬁ build: .
D .

command: python app.py

ports:
compose.yml __ -"5000:5000"
: volumes:
+NEGES - .:/code
pOI‘tS environment:
volumes - PYTHONUNBUFFERED=1

redis:
image: redis:latest
command: redis-server --appendonly yes

Links

$ docker compose up

Questions

