On the timescales of Type Ia Supernovae and Kilonovae explosions

Laura Greggio, INAF, Osservatorio Astronomico di Padova

Enrichment timescale: SF burst

Enrichment timescale: extended SF

Laura Greggio @ IFPU workshop, Trieste, Oct 9-13 2023

Light Curve properties : a large diversity

A variety of explosion mechanisms:

- Pure Deflagration Chandra models
 Delayed Detonation Chandra models
- Double Detonation Sub-Chandra models
- Detonation of Helium accreted layer on a sub-Chandra WD

....

Explosion mechanisms

Leung & Nomoto, 2023

Explosion mechanisms

Leung & Nomoto, 2023

For an instantaneous burst of SF mass M the number of SNIa exploding within (t,t+dt) is:

$$dn_{Ia}(t) = M \times k_{Ia} \times f_{Ia}(t_d = t)dt$$

 k_{Ia} = realization probability of the Ia scenario (#/Mo) f_{Ia} is the fraction of systems with delay time t_d equal to t

The distribution of the delay times is proportional to the SNIa rate following a burst of SF

$$\dot{n}_{Ia}(t) = M \times k_{Ia} \times f_{Ia}(t_d = t)$$

$$\int_0^{t_H} f_{Ia}(t)dt = 1$$

Analytical DTDs: Single Degenerates

The clock is the evolutionary lifetime of the secondary

$$f_{Ia}(t)dt \propto n(m_{2})dm_{2}$$

$$f_{Ia}(t) \propto |\dot{m}_{2,TO}(t)| \times \tilde{\varphi}(m_{2,TO})$$

$$\tilde{f}_{Ia}(t) \propto |\dot{m}_{2,TO}(t)| \times \tilde{\varphi}(m_{2,TO})$$

$$\tilde{\varphi}(m_{2,TO}) \propto \int_{m_{1,\min}}^{m_{1,\min}-8} \varphi(m_{1})f(m_{2,TO}/m_{1})dm_{1}$$

$$m_{1,\min} = \max\{m_{2,TO}; 2; f(m_{2,env})\}$$
Let a Gregolo @ LPPU workto

Analytical DTDs: Single Degenerates

Analytical DTDs: Double Degenerates

$$t_{D} = \tau_{MS}(m_{2}) + \tau_{GW}$$

$$\tau_{GW} = \frac{0.15A^{4}}{m_{WD1}m_{WD2}(m_{WD1} + m_{WD2})} \cong 0.6\frac{A^{4}}{M_{DD}^{3}} \quad \tau_{MS}(m_{2}) < 1 \text{ GV}$$

DD CLOSE: CE shrinks more the more massive the systems t_{MS} short -> t_{GW} short: DTD more populated at short delays

DD WIDE: M_{DD} and A decoupled DTD is flatter than for the DD CLOSE

A flat distribution of A maps into a distr. of t_{GW} skewed at the short end

Laura Greggio @ IFPU workshop, Trieste, Oct 9-13 2023

Analytical DTDs: Double Degenerates

The DTD is a modified SD curve

Width of the peak controlled by the least massive secondary in successful systems

Late epoch decline controlled by distribution of separations A

at late delay times: $t_d \sim \tau_{GW}$ $au_{GW}\!\propto\!\!A^4$
$$\begin{split} n(t_d) dt_d &\propto n(A) dA \qquad \frac{dA}{dt_d} \propto 0.25 t_d^{-0.75} \\ \underline{n(A) \propto A^{\beta}} \qquad n(\tau) d\tau \propto \tau^{0.25\beta - 0.75} \end{split}$$

J workshop, Trieste, Oct 9-13 2023

Cumulative fraction of explosions

Different DTDs imply

different timescales for the release of SNIa products to the ISM 50% of events within the first
 0.5 0.65 0.8 1 Gyr for s-Ch DDC DDW SDCh

different fractions of prompt events (e.g. events within the first 0.5 Gyr)

Correlation of the SNIa rate with the properties of the host

Constraining the DTD with the SNIa rates

(Greggio & Cappellaro, 2019, AA625, A113)

Comparison between models and observed rates for a family of Log-Normal SFH (Abramson et al. 2016)

Constraining the DTD with the SNIa rates

(Greggio & Cappellaro, 2019, AA625, A113)

Comparison between models and Observed rates for Log-Normal SFH

The differences of the observed rates at the color/sSFR extremes will yield a robust constraint on the DTD model

Laura Greggio @ IFPU workshop, Trieste, Oct 9-13 2023

k_{Ia} : the realization probability of the SNIa channel

At intermediate color the rates are similar: $k_{Ia} = 0.8 \times 10^{-3} (1/M_o)$ compare with N(m=2.5-8)/M = 4 × 10⁻² (1/M_o)

Kilonovae

On Aug 17, 2017 a GW signal from a NSM was detected by LIGO/VIRGO (GW170817)

11 hr later Las Campanas detects one optical transient in the same region of the sky (AT2017gfo)

FERMI and INTEGRAL register a sGRB (GRB170817A) occurred shortly after GW170817 in the same sky region

9 days later CHANDRA detects it in x-rays 16 days later VLA detects it in the radio

---- sGRB ---- KNe NSM

The Delay Time of Kilonovae

(Greggio, Simonetti & Matteucci, 2021, MNRAS 500, 1755)

The DTD of Kilonovae

(Cavallo & Greggio 2023, MNRAS 522, 3529)

Constraining the DTD of Kilonovae: cosmic rate

Laura Greggio @ IFPU workshop, Trieste, Oct 9-13 2023

1.0

3

2

II

3

3

 $\beta =$

1.0

Constraining the DTD of Kilonovae: properties of host galaxies

Laura Greggio @ IFPU workshop, Trieste, Oct 9-13 2023

WRAPPING UP

Progenitors: likely both SDs and DDs

Explosion mechanisms: both Chandra and Sub-Chandra The large diversity suggests that more mechanisms are at work, though the Delayed Detonations may be the typical mechanism of the `normal' SNIa

<u>The DTD : wide, more populated at short delay times</u> To constrain its shape we need a detailed understanding of the galaxies' SFH The realization probability is about 1 event per 1000 Mo of parent population

<u>To improve our understanding</u>: thorough mapping of the diversity of the SNIa events with the properties of the host, both global and local