Extreme Life and Death of Very Massive Stars

Kendall G. Shepherd (SISSA) 11 October 2023 IFPU Focus Week – Galactic Archaeology

In collaboration with: Prof. Alessandro Bressan (SISSA) Dr. Guglielmo Costa (Univ. Lyon)

Massive Stars – Broad Astrophysical Influence

Observationally

- Very luminous (visible at large distances)
- Trace star formation

R. Gendler

Evolution

- Main agents in chemical evolution of elements
- Inject energy into env.
- Produce ionizing radiation

NASA, ESA

Death

- Energetic transients (CCSNe, GRBs, PISN)
- Chemical Yields
- Live fast (~few Myr)

Pair Instability

The final **He core** determines the explosion mechanism and remnant properties (Heger, 2003)

Massive Pop III PISN Leave a Unique Nucleosynthetic Signature

 Observations of EMPGs show high (~solar) Fe/O but normal (low metallicity) N/O ratios (Goswami et al. 2022)

→ PISN effects needed from VMS to reproduce high Fe/O

Model Description

PAdova and TRieste Stellar Evolution Code (PARSEC)

Evolves single, isolated, nonrotating* stars from the pre main sequence, solving for structure and composition (Bressan et al., 2012, Costa et al., +19, Nguyen et al., +22) Publicly available to download from: <u>http://stev.oapd.inaf.it/PARSEC/</u>

New Parsec Tracks

Extending PARSEC tracks: *finer* grids of **massive** Pop I, II, & III stars to study their evolution, yields, and death

(Cesta, Sprintial metallicities: 10⁻¹¹ - 0.03 Z + 87 initial masses: 2 - 600 M_o + Rotating sets (New!)

Results - Evolution

Results – Comparison with Observations

Data: Tarantula Nebula (LMC) Single stars from R136 star cluster

- Schneider, et al., 2018
- Brands, et al., 2022

PARSEC Model

HRD of our models for Z = 0.006 (${\sim}0.5$ $\rm Z_{\odot})$

 \rightarrow Have structure, ages, chemical abundances, stellar type, etc. during whole evolution

Final fates predicted from Heger & Woosley 2002, Woosley 2017

Predictions of final fates based on Heger & Woosley 2002, Woosley 2017

Rotating Stars

- ▷ Rotating sets computed for Pop III, $\omega = 0.3$ and $\omega = 0.4$
- Final He core masses are expected to be larger in rotating stars than in nonrotating sets

(True, but up to a point)

▷ Rotating stars above a certain mass (~ 170M_o) all experience a dredge up, decreasing the core mass

Total Explosive Ejecta

Yields ejected via PISN are rich in Oxygen, Silicon, and Iron

Using Iron I Oxygen ratios can help to determine if PPISN/PISN have occurred (Goswami et al., 2021, Bressan et al., 2022)

New Ejecta (PI_{Core})

Sum isotopes from ³He - ⁶⁰ZN

Increasing Z \rightarrow Shifts Final Fates

Conclusions & Future work

Results

- Computed a large, complete, and consistent set of massive star models
- Investigated how initial mass and metallicity affect the stellar evolution, yields, remnant type and properties
 - Included rotation and calculated ionizing photon counts

Next:

- Releasing the tracks and calculations to the community
 - Can be implemented in chemical enrichment models of galaxies
- Compute yields for rotating tracks
- Compare with observations investigate ratios indicative of PI events

Thank you for your attention!

Image: JWST

Backup Slides Just in case

neiu components Across ropulations

21

Total Ejecta Yields for Increasing Z

Sum isotopes from ³He - ⁶⁰ZN

Newly Produced via PISN

Ionizing Photons

Total ejected via PI

Stability Against PI

Stability determined using the average adiabatic index over the whole star

$$\langle \Gamma_1 \rangle = \frac{\int_0^M \frac{\Gamma_1 P}{\rho} dm}{\int_0^M \frac{P}{\rho} dm}$$

- > Star is dynamically stable if $\langle \Gamma_1 \rangle > 4/3$ (Stothers et al.1999)
- ▷ To be conservative:

 $\langle \Gamma_1 \rangle < 4/3 + 0.01 \Rightarrow \text{instability}$

Yields calculation

Winds
$$E_{j}^{winds}(M_{i}) = \int_{0}^{\tau_{c}} \dot{M}(M_{i},t) X_{j}^{s}(t) dt$$

Mass of newly formed elemer $M_{im} = \int_0^{\tau_m} \dot{M}_{lost} \cdot [X_{fin}(i) - X_{orig}(i)] dt$

Stellar yield
$$p_{im} = M_{im}/m_{\star}$$

Total stellar mass ejecte $M_{imo} = X_{orig}(i) \cdot M_{lost}$

Production factors

Production Factors Z = 0.001

28

Total Ejecta

Total Ejecta Z = 0.001

29

