

Rotational Effect on The Surface Chemical Abundances along Stellar Evolution with PARSECv2.0 Database

IFPU FOCUS WEEK

Galactic Archaeology: reconstructing the history of galaxies

Chi Thanh NGUYEN

Trieste, 10/10/2023

Stellar Evolution with Rotation in PARSEC v2.0: Low- and Intermediate-mass Stars

Outlines

- The new release of PARSEC V2.0
 - Tracks of rotating stars
 - Variation of surface abundances
 - Isochrones of rotating stellar population
 - Applications
- Summary

Stellar Evolution with Rotation in PARSEC v2.0: Low- and Intermediate-mass Stars

Rotating stellar evolutionary group:

Astrophys Space Sci (2008) 316: 43–54 DOI 10.1007/s10509-007-9511-y

ORIGINAL ARTICLE

GENEC

The Geneva stellar evolution code

P. Eggenberger · G. Meynet · A. Maeder · R. Hirschi · C. Charbonnel · S. Talon · S. Ekström

A&A 631, A77 (2019) https://doi.org/10.1051/0004-6361/201935160 © ESO 2019

Astronomy Astrophysics

First grids of low-mass stellar models and isochrones with self-consistent treatment of rotation

From 0.2 to 1.5 M_{\odot} at seven metallicities from PMS to TAMS*

L. Amard^{1,2,3}, A. Palacios², C. Charbonnel^{1,4}, F. Gallet^{5,1}, C. Georgy¹, N. Lagarde⁶, and L. Siess⁷

doi:10.1088/0004-637X/764/1/21

THE ASTROPHYSICAL JOURNAL, 764:21 (36pp), 2013 February 10 \odot 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13–120 M_{\odot} AND THEIR EXPLOSIVE YIELDS

ALESSANDRO CHIEFFI^{1,2} AND MARCO LIMONGI^{2,3,4}
¹ Istituto Nazionale di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma, Italy; alessandro.chieffi@inaf.it
² Centre for Stellar & Planetary Astrophysics, School of Mathematical Sciences, P.O. Box 28M, Monash University,
Victoria 3800, Australia; marco.limongi@oa-roma.inaf.it
³ Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Italy
⁴ Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa 277-8583, Japan *Received 2012 Senember 18; accepted 2012 December 6; published 2013 January 21*

PARSEC V2.0: Stellar tracks of lowand intermediate-mass stars with rotation

Input Physics

Basic input physics

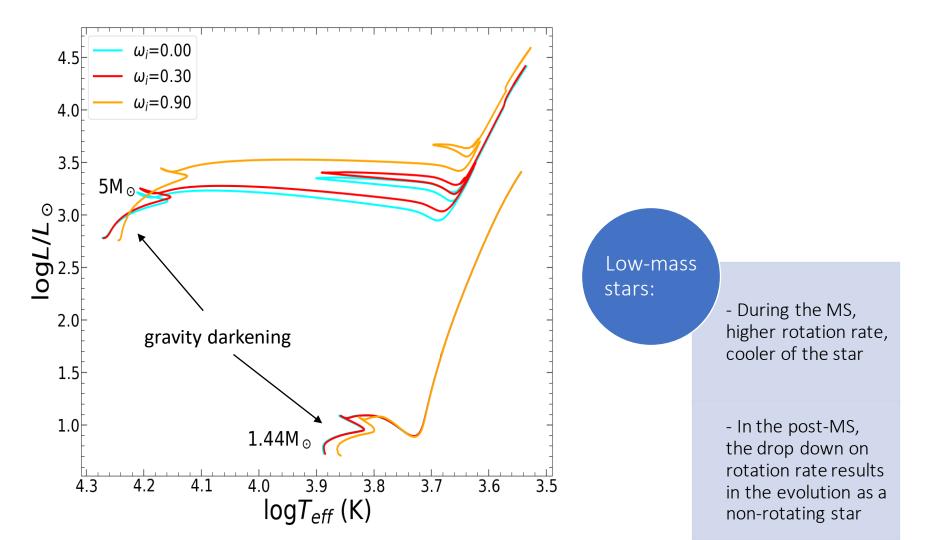
- Includes the new calibration of overshooting $\lambda_{ov} = 0.0 0.4$ (Costa et al., 2019) $\Lambda_e = 0.5 - 0.7 H_p$ (Fu et al., 2018)
- Includes the improvements of nuclear network and the treatment of chemical mixing scheme
- Includes mass loss during the evolution phases

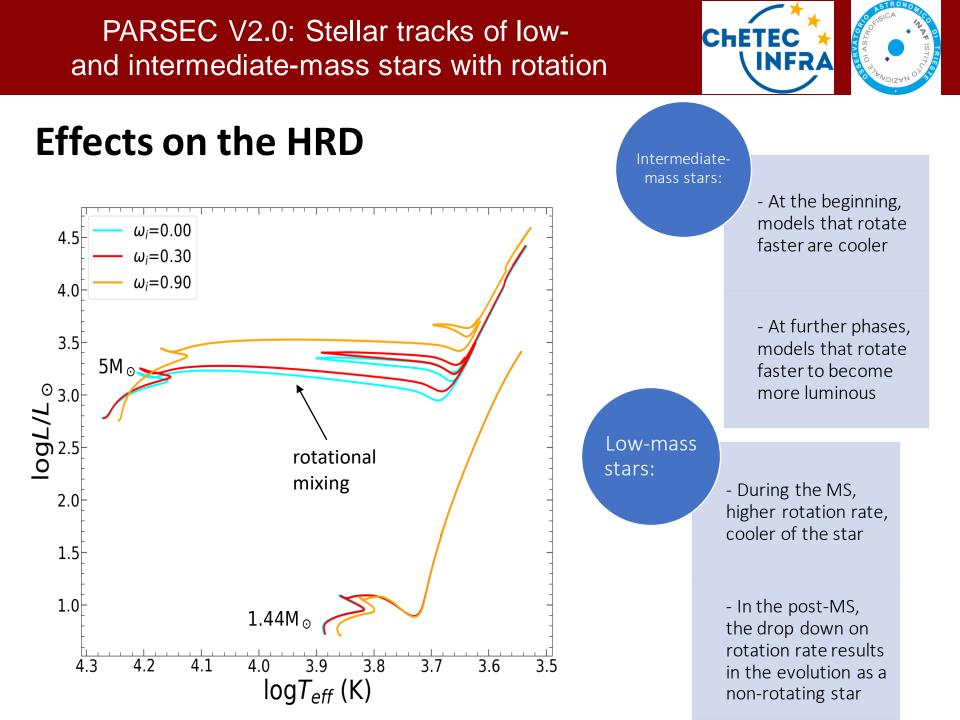
Rotation

- rotation rate: $\omega = \Omega/\Omega_c$ with $\Omega_c \propto (GM/R_{pol}^3)^{\frac{1}{2}}$
- Considered initial rates: $\omega_i = 0.00, 0.30, 0.60, 0.80, 0.90, 0.95, 0.99$
- Applied rotating model depends on the initial mass, up to a value $\omega_{i,max}$, $\omega_{i,max}$ (M) = 0.99(M M_{O1})/(M_{O2} M_{O1})

Metallicity & Mass range

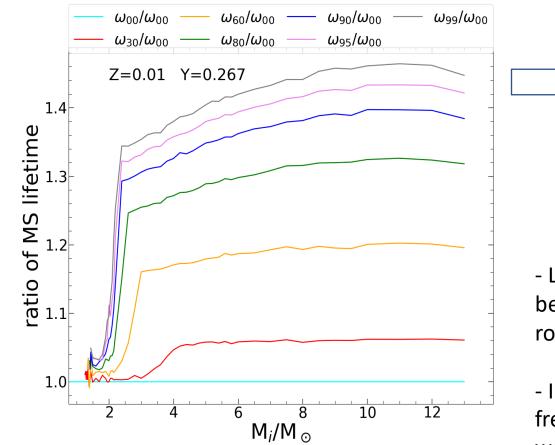
- Z-range: 0.004 0.017
- Mass range: $0.09 14 M_{\odot}$


Mass loss


- For rotating models: $\begin{array}{l} Mdot = Mdot \; (\omega=0) \; (1-v/v_{crit}\;)^{-\xi} \\ with \; v_{crit} = Gm(\;1-\Gamma_{e}\;)/r \; and \; \xi = 0.43 \end{array}$
- For non-rotating models:
 - Low-mass stars: Using Reimers' law
 - Intermediate-mass stars: Using de Jager et al. (1988) and Vink et al. (2001), corrected by a Z-dependence factor: Mdot ∝ (Z/Z_☉)^{0.85}

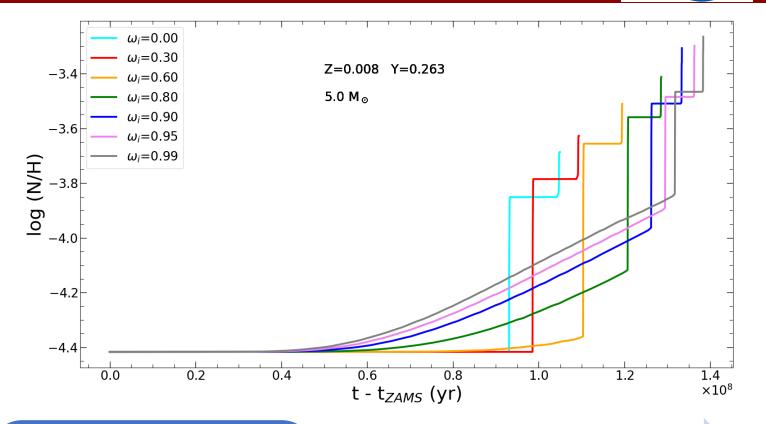
PARSEC V2.0: Stellar tracks of lowand intermediate-mass stars with rotation

Effects on the HRD



PARSEC V2.0: Stellar tracks of lowand intermediate-mass stars with rotation

MS-lifetime


the faster the stars rotate, the longer they stay in the MS

- LMSs: the ratio remains modest because of the lower efficiency of rotational mixing

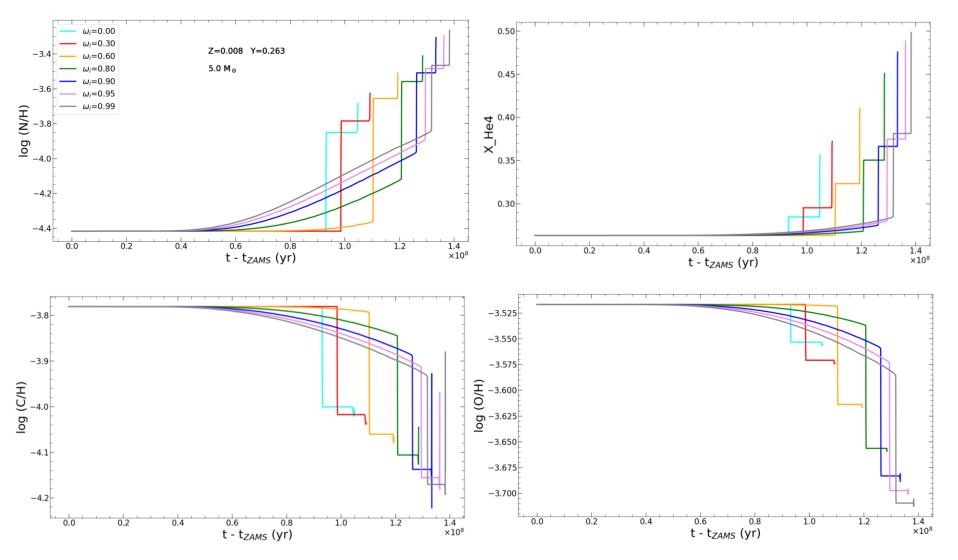
- IMSs: rotational mixing provides more fresh fuel to the central core due to the well developed radiative envelope

PARSEC V2.0: Transport of nuclear-

burned products

The transport of nuclear-burned products from the central region to the surface due to rotational mixing

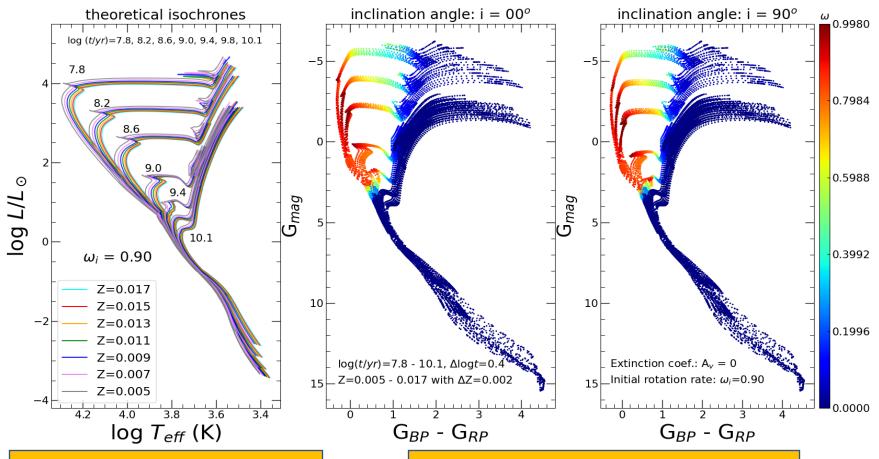
• A significant mixing can occur at much earlier stages, proportional to the initial rate


СНЕТЕ

 evident by the enhancement in the surface nitrogen and helium, or depletion of oxygen and carbon

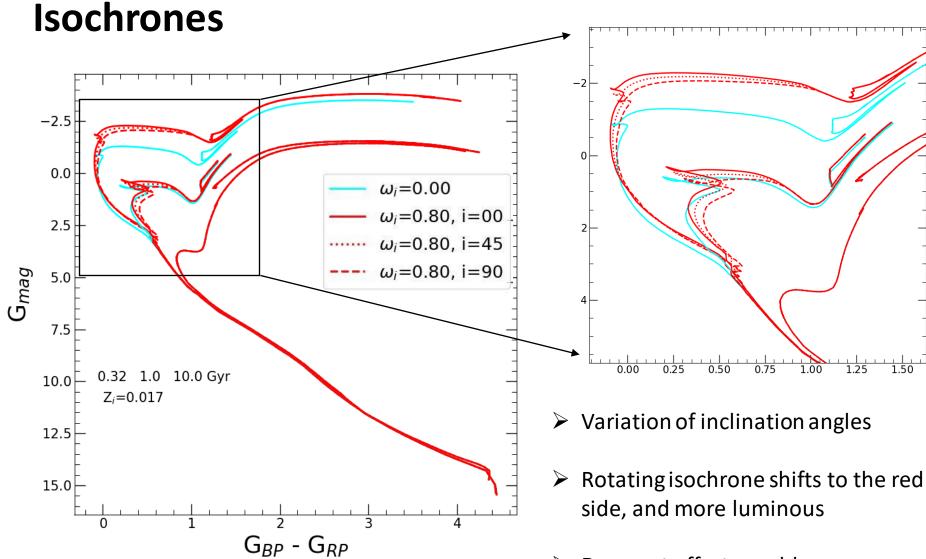
PARSEC V2.0: Transport of nuclearburned products

Transport of nuclear-burned products



PARSEC V2.0: Isochrones

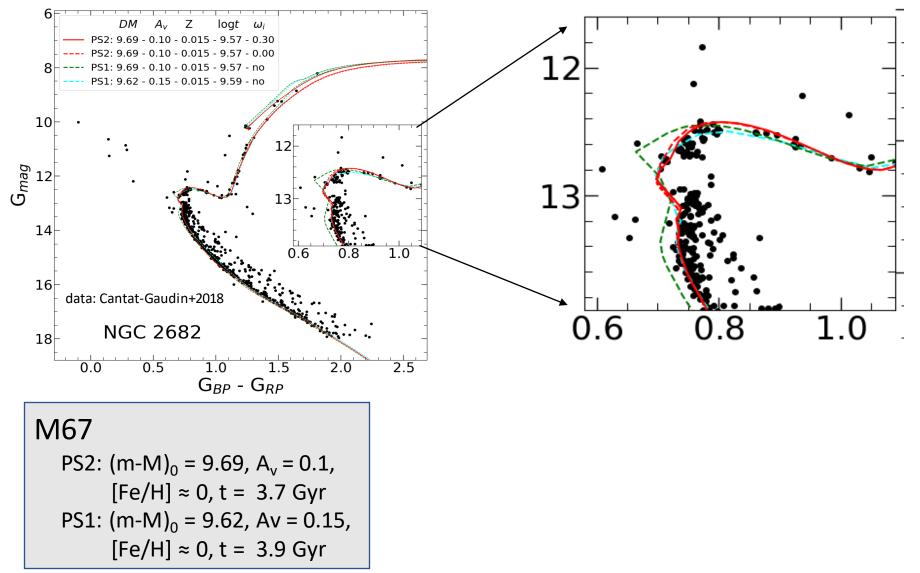
Isochrones


produced by TRILEGAL code

applied BC tables from YBC database

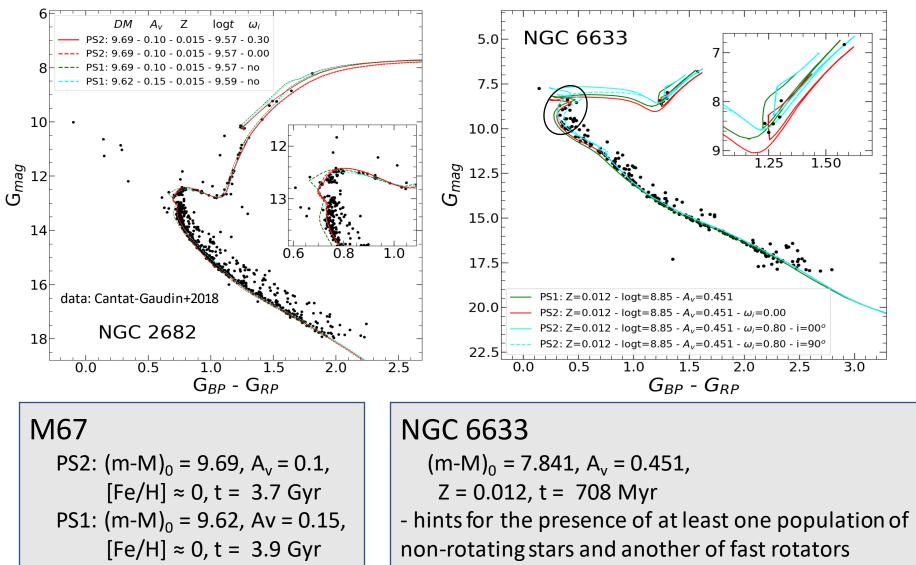
- evolution of rotation rate is clearly witnessed by the changes in color
- isochrones available at: http://stev.oapd.inaf.it/cgi-bin/cmd

PARSEC V2.0: Isochrones

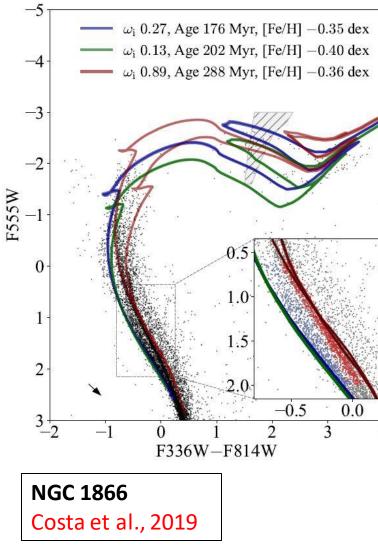


Does not effect on old age

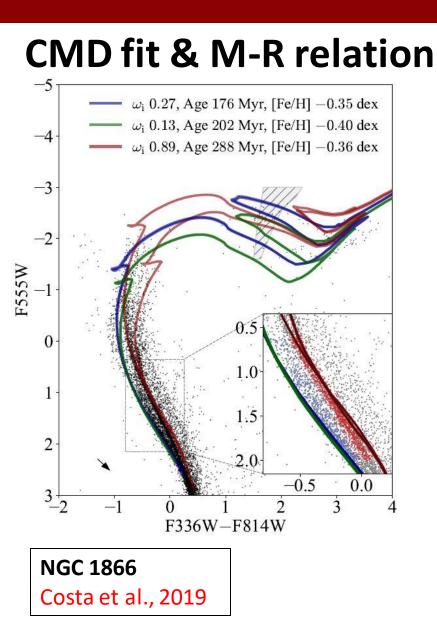
СНЕТЕС

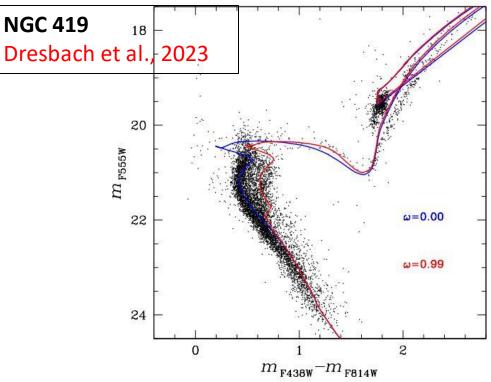


CMD fit

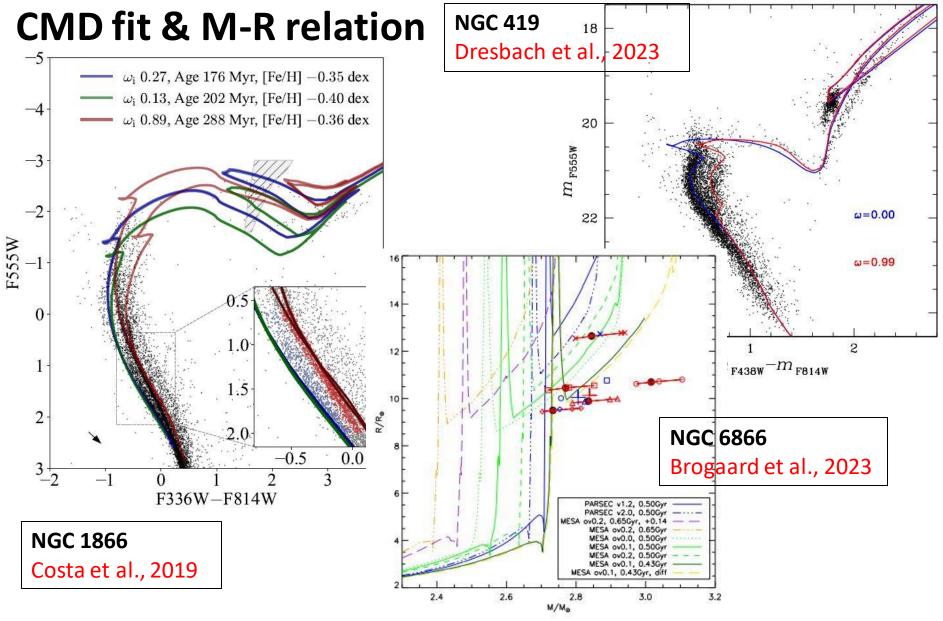


CMD fit





CMD fit & M-R relation



PARSEC V2.0: Database available online

Evolutionary tracks: Isochrones:

http://stev.oapd.inaf.it/PARSEC/tracks v2.html http://stev.oapd.inaf.it/cgi-bin/cmd

PARSE	C								=	CMD 3.	7 in <mark>r</mark>		
PAdova TRieste Stellar Evolutionary Code									A web interface dealing with stell Latest news				
NO		AR TRACKS T	OOLS PAPERS							 <u>Bug corrected!</u> (11nov22) Removed a small artefact at Mini=0.45 M <u>Bug corrected!</u> (19oct22) When computing LFs, the first magnitude <u>NEW!</u> (19jul22) First version of isochrones with rotation (PARSEC (23nov21) Added DP0 version of LSST filters. 	e bin was		
Please cite the fol Detailed descripti	llowing papers	e of PARSEC v2.0 if you use these tra- icks quantities are PARSEC V1.25	acks (Costa et al. e available here .	. 2019a, Costa et	al. 2019b. Nguy	en et al. 2022).					<u>Help FAC</u> ubmit Re		
PARSEC V Metalicity	2.0 All ± cet	Ω/Ω _{crit} = 0.00	Ω/Ω _{crit} = 0.30	Ω/Ω _{crit} = 0.60	Ω/Ω _{crit} = 0.80	Ω/Ω _{crit} = 0.90	Ω/Ω _{crit} = 0.95	Ω/Ω _{crit} =0.99		Evolutionary tracks PARSEC tracks (<u>Bressan et al. (2012</u>)) are computed for a scaled-solar of content is ZO=0.0152. <u>Tables of evolutionary tracks</u> are also available. Of TP-AGB phase, for several choices of mass loss and dredge up parameter Available	C <mark>OLIBR</mark> TS.		
0.006	± GET	L GET	± g ε τ	L GET	L GET	L GET	± GET	±		PARSEC going from the PMS to either the 1st TP, or C-ignition:	COLI add the		
0.008	± G E T	± GET	± GET	± GET	± GET	± cet	± GET	<u>Å</u> GET	c	■ PARSEC version 2.0 Available for $0.004 \le Z \le 0.017$ (- $0.58 \le [M/H] \le +0.07$), with rotation turned off for lower masses, of <u>Nguyen et al. (2022)</u> , • $\omega_1 = 0.00 = \omega_1 = 0.30 = \omega_2 = 0.60 = \omega_1 = 0.80 = \omega_1 = 0.95$	enveloj		
0.01	Å G E T	L GET	L GET	L GET	L GET	L GET	Å GET	<u>Å</u> 657		01-0-90 Notes: this choice will (1) turn off features like the star-by-star extinction, the Reimers-resettable mass loss, etc. and (2) change the			
0.014	Å 667	L GET	L GET	L GET	L GET	L GET	å GET	<u>A</u> GET		output format. • PARSEC version 1.28 Available for 0.0001≤Z≤0.06 (-2.2≤[M/H]≤+0.5); for 0.0001≤Z≤0.02	• + C COLIE		
0.017	L GET	<u>Å</u> GET	<u>Å</u> G E T	<u>Å</u> GET	± 0 E T	<u>Å</u> GET	± 087	<u>± 087</u>		the mass range is $0.1 \le M/M \odot <350$; for $0.03 \le Z \le 0.04$ $0.1 \le M/M \odot <150$, and for Z=0.06 $0.1 \le M/M \odot <20$ (cf. Tang et al. (2014) for $0.001 \le Z \le 0.004$, and <u>Chen et al. (2015</u>) for other Z). With revised and calibrated surface boundary conditions in low-mass dwarfs (<u>Chen et al</u> (2014)).	$Z \leq 0.00$		

out form

chrones and their derivatives

- ne PARSEC v2.0 tracks.
- verestimating the star counts. Accuracy was improved.
- e are still expanding their features.

on and following the Y=0.2485+1.78Z relation. The present solar metal tracks (Marigo et al. (2013)) extend their evolution to the end of the

PARSEC	COLIBRI								
yoing from the PMS to either the 1st TP, or C-ignition:	add the TP-AGB evolution, from the 1st TP to the total loss of envelope:								
PARSEC version 2.0 Vvaliable for 0.004≤Z≤0.017 (-0.58≤[M/H]≤+0.07), with rotation uned off for lower masses, cf. Nguyen et al. (2022). $ω_i=0.00 • ω_i=0.30 • ω_i=0.60 • ω_i=0.80 • ω_i=0.90 • ω_i=0.95$ $v_i=0.99$. Notes: this choice will (1) turn off features like the star-by-star xutinction, the Reimers-resettable mass loss, etc. and (2) change the butput format.									
• PARSEC version 1.2S Available for 0.0001≤Z≤0.06 (-2.2≤[M/H]≤+0.5); for 0.0001≤Z≤0.02 he mass range is 0.1≤M/M☉<350; for 0.03≤Z≤0.04 0.1≤M/M☉<150, and for Z=0.06 0.1≤M/M☉<20 (cf. Tang et al. (2014) for 0.001≤Z≤0.004, and Chen et al. (2015) for other Z). With revised and alibrated surface boundary conditions in low-mass dwarfs (Chen et al. 2014)).									

PARSEC V2.0: Database available online

atives

eir features.

counts. Accuracy was improved.

=0.2485+1.78Z relation. The present solar metal (013)) extend their evolution to the end of the

om the 1st TP to the total loss of

li et al. (2020)) for 0.008≤Z≤0.02, + 1. (2019)) for 0.0005≤Z≤0.006 + (2013), Rosenfield et al. (2016)) for li et al. (2019)) (himited to 0.0005≤Z≤0.03) li et al. (2019)) (himited to 0.0005≤Z≤0.03) et al. (2013) and Rosenfield et al.

 o_n

Evolutionary tracks: Isochrones:

http://stev.oapd.inaf.it/PARSEC/tracks v2.html http://stev.oapd.inaf.it/cgi-bin/cmd

PARS	EC								=		CMD 3.7	input form	
PAdova	PAdova TRieste Stellar Evolutionary Code								ſ	A web interface dealing with stellar isochrones and their der			
		DATABASE	TOOLS PAPERS							Bug corrected! (11nov22) Removed a small artefau Bug corrected! (19oct22) When computing LFs, th NEW! (19jul22) First version of isochrones with r (23nov21) Added DP0 version of LSST filters.	ne first magnitude bi	in was overestimating the star	
Please cite the	e following papers	e of PARSEC v2.C if you use these tr acks quantities are	racks (Costa et al	. 2019a, Costa et	al. 2019b, Nguy	en et al. 2022).						Up TAQ nit Reset	
P A R S E C Metrilicity	PARSEC V2.0	parsec v1.22 Ω/Ω _{crit} = 0.00	s $\Omega/\Omega_{crit} = 0.30$	$\Omega/\Omega_{crit} = 0.60$	$\Omega/\Omega_{\rm crit} = 0.80$	Ω/Ω _{crit} = 0.90	$\Omega/\Omega_{crit} = 0.95$	Ω/Ω _{crit} =0.99		Evolutionary tracks PARSEC tracks (Bressan et al. (2012)) are computed for content is Z0=0.0152. Tables of evolutionary tracks are The OP to De to Section 2015 and the sectio	or a scaled-solar con 2 also available. CO	nposition and following the <i>Y</i> ILIBRI tracks (<u>Marigo et al.</u> (
0.004	± GET	± GET	± GET	± 657	± 657	± 657	± 017	± ct T		TP-AGB phase, for several choices of mass loss and dre PARSEC going from the PMS to either the 1st TP, or C-ignition	Available set	ts of tracks:	
0.008	L GET	₫ GET	± c ∈ T	± G 2 7	L GET	± GET	± GET	± c = T		PARSEC version 2.0 Available for 0.004≤Z≤0 017 (-0.58≤[M/H]≤+0.07), v turned off for lower masses, cf. Nguyen et al. (2022). • $\omega_{1}=0.00 \circ \omega_{1}=0.30 \circ \omega_{2}=0.60 \circ \omega_{1}=0.80 \circ \omega_{2}=0.90$	vith rotation	Interpolati	
0.01	<u>Å</u> 017	<u>Å</u> 017	Å G E T	<u>Å</u> G E T	<u>Å</u> 6 E T	<u>Å</u> GET	<u>±</u> 0ET	<u>± 017</u>	C C	w ₁ =0.90 w ₁ =0.30 w ₁ =0.30 w ₁ =0.30 w ₁ =0.30 w ₁ =0.90 w ₁ =	ar-by-star		
0.014	<u>×</u>	L CET	<u><u></u></u>	 03, 0.02	<u>▲</u> , 0.002	± c : T	<u>له</u> ۵٤۲	<u><u>A</u> 057</u>		• PARSEC version 1.2S Available for 0.0001≤Z≤0.06 (-2.2≤[M/H]≤+0.5); for the mass range is 0.1≤M/M☉<350; for 0.03≤Z≤0.04 C and for Z=0.06 0.1≤M/M☉<20 (cf. Tang et al. (2014)	0.0001≤Z≤0.02 0.1≤M/M☉<150,	• + COLIBRI S_37 (Pastore COLIBRI S_35 (Pastorelli et : COLIBRI PR16 (Marigo et al Z<0.0002 and Z>0.03)	
0.017	E	xtend t	<u>o</u> Z= 0.							0.001/Z<0.004, and <u>Chen et al.</u> (2015) for other Z). V calibrated surface boundary conditions in low-mass d (2014)).	Vith revised and lwarfs (<u>Chen et al.</u>	+ COLIBRI S_35 (Pastore + COLIBRI S_07 (Pastore + COLIBRI PR16 (Marigo (2016)) (limited to 0.00015250.06)	

Summary

PARSEC V2.0: Tracks & isochrones of low- and intermediate-mass stars with rotation

- 1. initial metallicity: 0.004 0.017
- 2. initial masses: 0.09 14.0 M_{\odot}
- 3. initial rotation rate: 0.00 0.99
- 4. public use:
 - tracks: <u>http://stev.oapd.inaf.it/PARSEC/tracks_v2.html</u>
 - isochrones: <u>http://stev.oapd.inaf.it/cgi-bin/cmd</u>
 - reference: Nguyen et al., 2022

Soon to be updated:

1. Complement the 3 sets: Z=0.002, 0.02, 0.03 to the database

Thank You!!!